Loading…
Translational bioinformatics in mental health: open access data sources and computational biomarker discovery
Abstract Mental illness is increasingly recognized as both a significant cost to society and a significant area of opportunity for biological breakthrough. As -omics and imaging technologies enable researchers to probe molecular and physiological underpinnings of multiple diseases, opportunities ari...
Saved in:
Published in: | Briefings in bioinformatics 2019-05, Vol.20 (3), p.842-856 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Mental illness is increasingly recognized as both a significant cost to society and a significant area of opportunity for biological breakthrough. As -omics and imaging technologies enable researchers to probe molecular and physiological underpinnings of multiple diseases, opportunities arise to explore the biological basis for behavioral health and disease. From individual investigators to large international consortia, researchers have generated rich data sets in the area of mental health, including genomic, transcriptomic, metabolomic, proteomic, clinical and imaging resources. General data repositories such as the Gene Expression Omnibus (GEO) and Database of Genotypes and Phenotypes (dbGaP) and mental health (MH)-specific initiatives, such as the Psychiatric Genomics Consortium, MH Research Network and PsychENCODE represent a wealth of information yet to be gleaned. At the same time, novel approaches to integrate and analyze data sets are enabling important discoveries in the area of mental and behavioral health. This review will discuss and catalog into an organizing framework the increasingly diverse set of MH data resources available, using schizophrenia as a focus area, and will describe novel and integrative approaches to molecular biomarker discovery that make use of mental health data. |
---|---|
ISSN: | 1477-4054 1467-5463 1477-4054 |
DOI: | 10.1093/bib/bbx157 |