Loading…
Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins
• Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. • We pr...
Saved in:
Published in: | The New phytologist 2019-01, Vol.221 (2), p.960-975 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33 |
container_end_page | 975 |
container_issue | 2 |
container_start_page | 960 |
container_title | The New phytologist |
container_volume | 221 |
creator | Ullah, Chhana Tsai, Chung-Jui Unsicker, Sybille B. Xue, Liangjiao Reichelt, Michael Gershenzon, Jonathan Hammerbacher, Almuth |
description | • Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection.
• We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
• Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen.
• We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection. |
doi_str_mv | 10.1111/nph.15396 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6585937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26557267</jstor_id><sourcerecordid>26557267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rh64Q9Qgld60d18NEl7I8iirrB-gArehTPp6UyWTlKTdqR_x19qxu4OeiEGkkDyvO85B96ieMzoGcvr3A_bMyZFo-4UK1appqyZ0HeLFaW8LlWlvp0UD1K6ppQ2UvH7xYmgTGWGr4qfn6F3ds6bgHVtPka3hxETGcLQQyQtdugTEtiA82kk4xbJ2oUxhmGbRXHKb93kN1Mi77GH3ZBCBJKVzroye0y980D2DojzNiIkbA_6NPvslFwioSM2F7Rb5wn4lgwxQP4Ldgbv2lzzYXGvgz7ho5v7tPj65vWXi8vy6uPbdxevrkpbKa5Ky0BWVatRIzTYKiptrWWnacMqpKIDi2tNO4nIGwFSN4qB0poJZuuGoxCnxcvFd5jWO2wt-jFCb4bodhBnE8CZv3-825pN2Bsla9kInQ2eLQYhjc4k6w5T2eA92tEwxWXD6gw9v6kSw_cJ02h2Llnse_AYpmQ457ljuvj9B6VNrZUSNc3oiwW1MaQUsTu2zag5ZMTkjJjfGcns0z_nPJK3ocjA-QL8cD3O_3YyHz5d3lo-WRTXaQzxqOBKSs2VFr8ACmDUtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098766380</pqid></control><display><type>article</type><title>Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins</title><source>Wiley</source><source>JSTOR</source><creator>Ullah, Chhana ; Tsai, Chung-Jui ; Unsicker, Sybille B. ; Xue, Liangjiao ; Reichelt, Michael ; Gershenzon, Jonathan ; Hammerbacher, Almuth</creator><creatorcontrib>Ullah, Chhana ; Tsai, Chung-Jui ; Unsicker, Sybille B. ; Xue, Liangjiao ; Reichelt, Michael ; Gershenzon, Jonathan ; Hammerbacher, Almuth ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>• Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection.
• We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
• Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen.
• We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15396</identifier><identifier>PMID: 30168132</identifier><language>eng</language><publisher>England: John Wiley & Sons Ltd</publisher><subject>abscisic acid ; Basidiomycota - physiology ; benzothiadiazole (BTH) ; biosynthesis ; catechin ; Catechin - metabolism ; chemical defense ; condensed tannins ; Cyclopentanes - metabolism ; drought ; drought stress ; flavan-3-ols ; Flavonoids - metabolism ; Gene Expression Regulation, Plant ; genes ; genetic engineering ; genetically modified organisms ; hormones ; immunity ; jasmonic acid ; leaf rust ; leaves ; Melampsora larici-populina ; metabolites ; Oxylipins - metabolism ; phytohormones ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Growth Regulators - metabolism ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; plant pathogenic fungi ; Plant Sciences ; Populus - genetics ; Populus - immunology ; Populus - microbiology ; Populus nigra ; proanthocyanidins ; Proanthocyanidins - metabolism ; salicylic acid ; Salicylic Acid - metabolism ; Signal Transduction ; transcriptional activation ; trees</subject><ispartof>The New phytologist, 2019-01, Vol.221 (2), p.960-975</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33</citedby><cites>FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33</cites><orcidid>0000-0002-9282-7704 ; 0000-0002-8898-669X ; 0000-0002-1812-1551 ; 0000-0002-0262-2634 ; 0000000218121551 ; 000000028898669X ; 0000000292827704 ; 0000000202622634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26557267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26557267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30168132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1625918$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ullah, Chhana</creatorcontrib><creatorcontrib>Tsai, Chung-Jui</creatorcontrib><creatorcontrib>Unsicker, Sybille B.</creatorcontrib><creatorcontrib>Xue, Liangjiao</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Gershenzon, Jonathan</creatorcontrib><creatorcontrib>Hammerbacher, Almuth</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection.
• We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
• Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen.
• We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.</description><subject>abscisic acid</subject><subject>Basidiomycota - physiology</subject><subject>benzothiadiazole (BTH)</subject><subject>biosynthesis</subject><subject>catechin</subject><subject>Catechin - metabolism</subject><subject>chemical defense</subject><subject>condensed tannins</subject><subject>Cyclopentanes - metabolism</subject><subject>drought</subject><subject>drought stress</subject><subject>flavan-3-ols</subject><subject>Flavonoids - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>genetic engineering</subject><subject>genetically modified organisms</subject><subject>hormones</subject><subject>immunity</subject><subject>jasmonic acid</subject><subject>leaf rust</subject><subject>leaves</subject><subject>Melampsora larici-populina</subject><subject>metabolites</subject><subject>Oxylipins - metabolism</subject><subject>phytohormones</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>plant pathogenic fungi</subject><subject>Plant Sciences</subject><subject>Populus - genetics</subject><subject>Populus - immunology</subject><subject>Populus - microbiology</subject><subject>Populus nigra</subject><subject>proanthocyanidins</subject><subject>Proanthocyanidins - metabolism</subject><subject>salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Signal Transduction</subject><subject>transcriptional activation</subject><subject>trees</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkl2L1DAUhoso7rh64Q9Qgld60d18NEl7I8iirrB-gArehTPp6UyWTlKTdqR_x19qxu4OeiEGkkDyvO85B96ieMzoGcvr3A_bMyZFo-4UK1appqyZ0HeLFaW8LlWlvp0UD1K6ppQ2UvH7xYmgTGWGr4qfn6F3ds6bgHVtPka3hxETGcLQQyQtdugTEtiA82kk4xbJ2oUxhmGbRXHKb93kN1Mi77GH3ZBCBJKVzroye0y980D2DojzNiIkbA_6NPvslFwioSM2F7Rb5wn4lgwxQP4Ldgbv2lzzYXGvgz7ho5v7tPj65vWXi8vy6uPbdxevrkpbKa5Ky0BWVatRIzTYKiptrWWnacMqpKIDi2tNO4nIGwFSN4qB0poJZuuGoxCnxcvFd5jWO2wt-jFCb4bodhBnE8CZv3-825pN2Bsla9kInQ2eLQYhjc4k6w5T2eA92tEwxWXD6gw9v6kSw_cJ02h2Llnse_AYpmQ457ljuvj9B6VNrZUSNc3oiwW1MaQUsTu2zag5ZMTkjJjfGcns0z_nPJK3ocjA-QL8cD3O_3YyHz5d3lo-WRTXaQzxqOBKSs2VFr8ACmDUtA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Ullah, Chhana</creator><creator>Tsai, Chung-Jui</creator><creator>Unsicker, Sybille B.</creator><creator>Xue, Liangjiao</creator><creator>Reichelt, Michael</creator><creator>Gershenzon, Jonathan</creator><creator>Hammerbacher, Almuth</creator><general>John Wiley & Sons Ltd</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9282-7704</orcidid><orcidid>https://orcid.org/0000-0002-8898-669X</orcidid><orcidid>https://orcid.org/0000-0002-1812-1551</orcidid><orcidid>https://orcid.org/0000-0002-0262-2634</orcidid><orcidid>https://orcid.org/0000000218121551</orcidid><orcidid>https://orcid.org/000000028898669X</orcidid><orcidid>https://orcid.org/0000000292827704</orcidid><orcidid>https://orcid.org/0000000202622634</orcidid></search><sort><creationdate>201901</creationdate><title>Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins</title><author>Ullah, Chhana ; Tsai, Chung-Jui ; Unsicker, Sybille B. ; Xue, Liangjiao ; Reichelt, Michael ; Gershenzon, Jonathan ; Hammerbacher, Almuth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>abscisic acid</topic><topic>Basidiomycota - physiology</topic><topic>benzothiadiazole (BTH)</topic><topic>biosynthesis</topic><topic>catechin</topic><topic>Catechin - metabolism</topic><topic>chemical defense</topic><topic>condensed tannins</topic><topic>Cyclopentanes - metabolism</topic><topic>drought</topic><topic>drought stress</topic><topic>flavan-3-ols</topic><topic>Flavonoids - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>genetic engineering</topic><topic>genetically modified organisms</topic><topic>hormones</topic><topic>immunity</topic><topic>jasmonic acid</topic><topic>leaf rust</topic><topic>leaves</topic><topic>Melampsora larici-populina</topic><topic>metabolites</topic><topic>Oxylipins - metabolism</topic><topic>phytohormones</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>plant pathogenic fungi</topic><topic>Plant Sciences</topic><topic>Populus - genetics</topic><topic>Populus - immunology</topic><topic>Populus - microbiology</topic><topic>Populus nigra</topic><topic>proanthocyanidins</topic><topic>Proanthocyanidins - metabolism</topic><topic>salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Signal Transduction</topic><topic>transcriptional activation</topic><topic>trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Chhana</creatorcontrib><creatorcontrib>Tsai, Chung-Jui</creatorcontrib><creatorcontrib>Unsicker, Sybille B.</creatorcontrib><creatorcontrib>Xue, Liangjiao</creatorcontrib><creatorcontrib>Reichelt, Michael</creatorcontrib><creatorcontrib>Gershenzon, Jonathan</creatorcontrib><creatorcontrib>Hammerbacher, Almuth</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Chhana</au><au>Tsai, Chung-Jui</au><au>Unsicker, Sybille B.</au><au>Xue, Liangjiao</au><au>Reichelt, Michael</au><au>Gershenzon, Jonathan</au><au>Hammerbacher, Almuth</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>221</volume><issue>2</issue><spage>960</spage><epage>975</epage><pages>960-975</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection.
• We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
• Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen.
• We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.</abstract><cop>England</cop><pub>John Wiley & Sons Ltd</pub><pmid>30168132</pmid><doi>10.1111/nph.15396</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9282-7704</orcidid><orcidid>https://orcid.org/0000-0002-8898-669X</orcidid><orcidid>https://orcid.org/0000-0002-1812-1551</orcidid><orcidid>https://orcid.org/0000-0002-0262-2634</orcidid><orcidid>https://orcid.org/0000000218121551</orcidid><orcidid>https://orcid.org/000000028898669X</orcidid><orcidid>https://orcid.org/0000000292827704</orcidid><orcidid>https://orcid.org/0000000202622634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2019-01, Vol.221 (2), p.960-975 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6585937 |
source | Wiley; JSTOR |
subjects | abscisic acid Basidiomycota - physiology benzothiadiazole (BTH) biosynthesis catechin Catechin - metabolism chemical defense condensed tannins Cyclopentanes - metabolism drought drought stress flavan-3-ols Flavonoids - metabolism Gene Expression Regulation, Plant genes genetic engineering genetically modified organisms hormones immunity jasmonic acid leaf rust leaves Melampsora larici-populina metabolites Oxylipins - metabolism phytohormones Plant Diseases - immunology Plant Diseases - microbiology Plant Growth Regulators - metabolism Plant Leaves - genetics Plant Leaves - metabolism Plant Leaves - microbiology plant pathogenic fungi Plant Sciences Populus - genetics Populus - immunology Populus - microbiology Populus nigra proanthocyanidins Proanthocyanidins - metabolism salicylic acid Salicylic Acid - metabolism Signal Transduction transcriptional activation trees |
title | Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salicylic%20acid%20activates%20poplar%20defense%20against%20the%20biotrophic%20rust%20fungus%20Melampsora%20larici-populina%20via%20increased%20biosynthesis%20of%20catechin%20and%20proanthocyanidins&rft.jtitle=The%20New%20phytologist&rft.au=Ullah,%20Chhana&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-01&rft.volume=221&rft.issue=2&rft.spage=960&rft.epage=975&rft.pages=960-975&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15396&rft_dat=%3Cjstor_pubme%3E26557267%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4626-c1a544d7e7ea9ed605c875f70914e03faceb70f5ee293a57961a677131c892e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2098766380&rft_id=info:pmid/30168132&rft_jstor_id=26557267&rfr_iscdi=true |