Loading…

A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion

The dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. The random flying behavior of dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the overflowing of the search area and interruption of...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2019-01, Vol.2019 (2019), p.1-17
Main Authors: Aci, Cigdem Inan, Gulcan, Hakan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3
cites cdi_FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3
container_end_page 17
container_issue 2019
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2019
creator Aci, Cigdem Inan
Gulcan, Hakan
description The dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. The random flying behavior of dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the overflowing of the search area and interruption of random flights due to its big searching steps. In this study, an algorithm, known as the Brownian motion, is used to improve the randomization stage of the DA. The modified DA was applied to 15 single-objective and 6 multiobjective problems and then compared with the original algorithm. The modified DA provided up to 90% improvement compared to the original algorithm’s minimum point access. The modified algorithm was also applied to welded beam design, a well-known benchmark problem, and thus was able to calculate the optimum cost 20% lower.
doi_str_mv 10.1155/2019/6871298
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611170820</galeid><sourcerecordid>A611170820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqWwY40ssUGCUD_iRzZIQ3lKrYoEXVuOY2c8cuypnbQqvx5HM0yBFStf6X46x-eeqnqO4FuEKD3FELWnTHCEW_GgOkZlrCnm5OFhZvSoepLzBkLKKcSPqyOCsECEsOPKrcBF7J11pgcfkhpisP4OXG4nN7qfanIxgJUfYnLTegQ2JvDdhcGbGqjQg4vZF6LbGD25GwO-pdh5M2ZwlQsE3qd4G5wKxWDReVo9sspn82z_nlRXnz7-OPtSn19-_nq2Oq9107ZT3VsuWtFpjBrcdg0xTEPE-0YI1LGOdxhbLZhiPeHENAoJjUp21WBurWm1JifVu53udu5G02sTpqS83CY3qnQno3Ly701waznEG8moaAmCReDVXiDF69nkSY4ua-O9CibOWWJMiSgXhKSgL_9BN3FOocQrVIMI5Biye2pQ3kgXbCy-ehGVK4YQ4lDgxfbNjtIp5pyMPXwZQbk0LZem5b7pgr_4M-YB_l1tAV7vgLULvbp1_ylnCmOsuqfLmjaM_AKkGLou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241307206</pqid></control><display><type>article</type><title>A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion</title><source>Wiley_OA刊</source><source>ProQuest - Publicly Available Content Database</source><creator>Aci, Cigdem Inan ; Gulcan, Hakan</creator><contributor>Bartak, Roman ; Roman Bartak</contributor><creatorcontrib>Aci, Cigdem Inan ; Gulcan, Hakan ; Bartak, Roman ; Roman Bartak</creatorcontrib><description>The dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. The random flying behavior of dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the overflowing of the search area and interruption of random flights due to its big searching steps. In this study, an algorithm, known as the Brownian motion, is used to improve the randomization stage of the DA. The modified DA was applied to 15 single-objective and 6 multiobjective problems and then compared with the original algorithm. The modified DA provided up to 90% improvement compared to the original algorithm’s minimum point access. The modified algorithm was also applied to welded beam design, a well-known benchmark problem, and thus was able to calculate the optimum cost 20% lower.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2019/6871298</identifier><identifier>PMID: 31281336</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Animals ; Benchmarking ; Brownian motion ; Civil engineering ; Comparative analysis ; Computer Simulation - economics ; Design modifications ; Mathematical optimization ; Models, Biological ; Motion ; Multiple objective analysis ; Odonata ; Optimization ; Optimization algorithms ; Optimization techniques ; Overflow ; Parameter estimation ; Problem Solving ; R&amp;D ; Research &amp; development ; Studies</subject><ispartof>Computational intelligence and neuroscience, 2019-01, Vol.2019 (2019), p.1-17</ispartof><rights>Copyright © 2019 Çiğdem İnan Acı and Hakan Gülcan.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Çiğdem İnan Acı and Hakan Gülcan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2019 Çiğdem İnan Acı and Hakan Gülcan. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3</citedby><cites>FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3</cites><orcidid>0000-0002-0028-9890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2241307206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2241307206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31281336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bartak, Roman</contributor><contributor>Roman Bartak</contributor><creatorcontrib>Aci, Cigdem Inan</creatorcontrib><creatorcontrib>Gulcan, Hakan</creatorcontrib><title>A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>The dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. The random flying behavior of dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the overflowing of the search area and interruption of random flights due to its big searching steps. In this study, an algorithm, known as the Brownian motion, is used to improve the randomization stage of the DA. The modified DA was applied to 15 single-objective and 6 multiobjective problems and then compared with the original algorithm. The modified DA provided up to 90% improvement compared to the original algorithm’s minimum point access. The modified algorithm was also applied to welded beam design, a well-known benchmark problem, and thus was able to calculate the optimum cost 20% lower.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Benchmarking</subject><subject>Brownian motion</subject><subject>Civil engineering</subject><subject>Comparative analysis</subject><subject>Computer Simulation - economics</subject><subject>Design modifications</subject><subject>Mathematical optimization</subject><subject>Models, Biological</subject><subject>Motion</subject><subject>Multiple objective analysis</subject><subject>Odonata</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Overflow</subject><subject>Parameter estimation</subject><subject>Problem Solving</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Studies</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNkUtv1DAUhSMEoqWwY40ssUGCUD_iRzZIQ3lKrYoEXVuOY2c8cuypnbQqvx5HM0yBFStf6X46x-eeqnqO4FuEKD3FELWnTHCEW_GgOkZlrCnm5OFhZvSoepLzBkLKKcSPqyOCsECEsOPKrcBF7J11pgcfkhpisP4OXG4nN7qfanIxgJUfYnLTegQ2JvDdhcGbGqjQg4vZF6LbGD25GwO-pdh5M2ZwlQsE3qd4G5wKxWDReVo9sspn82z_nlRXnz7-OPtSn19-_nq2Oq9107ZT3VsuWtFpjBrcdg0xTEPE-0YI1LGOdxhbLZhiPeHENAoJjUp21WBurWm1JifVu53udu5G02sTpqS83CY3qnQno3Ly701waznEG8moaAmCReDVXiDF69nkSY4ua-O9CibOWWJMiSgXhKSgL_9BN3FOocQrVIMI5Biye2pQ3kgXbCy-ehGVK4YQ4lDgxfbNjtIp5pyMPXwZQbk0LZem5b7pgr_4M-YB_l1tAV7vgLULvbp1_ylnCmOsuqfLmjaM_AKkGLou</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Aci, Cigdem Inan</creator><creator>Gulcan, Hakan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0028-9890</orcidid></search><sort><creationdate>20190101</creationdate><title>A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion</title><author>Aci, Cigdem Inan ; Gulcan, Hakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Benchmarking</topic><topic>Brownian motion</topic><topic>Civil engineering</topic><topic>Comparative analysis</topic><topic>Computer Simulation - economics</topic><topic>Design modifications</topic><topic>Mathematical optimization</topic><topic>Models, Biological</topic><topic>Motion</topic><topic>Multiple objective analysis</topic><topic>Odonata</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Overflow</topic><topic>Parameter estimation</topic><topic>Problem Solving</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aci, Cigdem Inan</creatorcontrib><creatorcontrib>Gulcan, Hakan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aci, Cigdem Inan</au><au>Gulcan, Hakan</au><au>Bartak, Roman</au><au>Roman Bartak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>The dragonfly algorithm (DA) is one of the optimization techniques developed in recent years. The random flying behavior of dragonflies in nature is modeled in the DA using the Levy flight mechanism (LFM). However, LFM has disadvantages such as the overflowing of the search area and interruption of random flights due to its big searching steps. In this study, an algorithm, known as the Brownian motion, is used to improve the randomization stage of the DA. The modified DA was applied to 15 single-objective and 6 multiobjective problems and then compared with the original algorithm. The modified DA provided up to 90% improvement compared to the original algorithm’s minimum point access. The modified algorithm was also applied to welded beam design, a well-known benchmark problem, and thus was able to calculate the optimum cost 20% lower.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>31281336</pmid><doi>10.1155/2019/6871298</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0028-9890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2019-01, Vol.2019 (2019), p.1-17
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589310
source Wiley_OA刊; ProQuest - Publicly Available Content Database
subjects Algorithms
Animals
Benchmarking
Brownian motion
Civil engineering
Comparative analysis
Computer Simulation - economics
Design modifications
Mathematical optimization
Models, Biological
Motion
Multiple objective analysis
Odonata
Optimization
Optimization algorithms
Optimization techniques
Overflow
Parameter estimation
Problem Solving
R&D
Research & development
Studies
title A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Dragonfly%20Optimization%20Algorithm%20for%20Single-%20and%20Multiobjective%20Problems%20Using%20Brownian%20Motion&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Aci,%20Cigdem%20Inan&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2019/6871298&rft_dat=%3Cgale_pubme%3EA611170820%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-df7898bc21429b43e6c017d4881b6b7b22fc86a6d373e4a18c1871a427ffe9cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2241307206&rft_id=info:pmid/31281336&rft_galeid=A611170820&rfr_iscdi=true