Loading…

MicroRNA‐374b induces endothelial‐to‐mesenchymal transition and early lesion formation through the inhibition of MAPK7 signaling

Endothelial–mesenchymal transition occurs during intimal hyperplasia and neointima formation via mechanisms that are incompletely understood. Endothelial MAPK7 signaling is a key mechanosensitive factor that protects against endothelial–mesenchymal transition, but its signaling activity is lost in v...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of pathology 2019-04, Vol.247 (4), p.456-470
Main Authors: Vanchin, Byambasuren, Offringa, Emma, Friedrich, Julian, Brinker, Marja GL, Kiers, Bianca, Pereira, Alexandre C, Harmsen, Martin C, Moonen, Jan‐Renier AJ, Krenning, Guido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endothelial–mesenchymal transition occurs during intimal hyperplasia and neointima formation via mechanisms that are incompletely understood. Endothelial MAPK7 signaling is a key mechanosensitive factor that protects against endothelial–mesenchymal transition, but its signaling activity is lost in vessel areas that are undergoing pathological remodeling. At sites of vascular remodeling in mice and pigs, endothelial MAPK7 signaling was lost. The TGFβ‐induced microRNA‐374b targets MAPK7 and its downstream effectors in endothelial cells, and its expression induces endothelial–mesenchymal transition. Gain‐of‐function experiments, where endothelial MAPK7 signaling was restored, precluded endothelial–mesenchymal transition. In human coronary artery disease, disease severity is associated with decreased MAPK7 expression levels and increased miR‐374b expression levels. Endothelial–mesenchymal transition occurs in intimal hyperplasia and early lesion formation and is governed in part by microRNA‐374b‐induced silencing of MAPK7 signaling. Restoration of MAPK7 signaling abrogated these pathological effects in endothelial cells expressing miR‐374b. Thus, our data suggest that the TGFβ‐miR‐374b‐MAPK7 axis plays a key role in the induction of endothelial–mesenchymal transition during intimal hyperplasia and early lesion formation and might pose an interesting target for antiatherosclerosis therapy. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
ISSN:0022-3417
1096-9896
DOI:10.1002/path.5204