Loading…

Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae

Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-06, Vol.9 (1), p.9185-10, Article 9185
Main Authors: Martins, Dorival, Nguyen, Dao, English, Ann M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63
cites cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63
container_end_page 10
container_issue 1
container_start_page 9185
container_title Scientific reports
container_volume 9
creator Martins, Dorival
Nguyen, Dao
English, Ann M.
description Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase ( ctt1 ) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H 2 O 2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H 2 O 2 preconditioning does not alter the resistance of ctt1 Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1 Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.
doi_str_mv 10.1038/s41598-019-45070-w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246230752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHEO9WcSX5DQio9KlTgAZ2vinWRdZe1gO1stvx7DllIu-OKR533fGesh5CVnbziT_VVWXJu-Ydw0SrOONXdPyLlgSjdCCvH0UX1GLnO-ZfVoYRQ3z8mZ5ELqjnXnpGxK4dRBgRkyUnDFH3w50iUWDMVDwUyhFuMaJpgp_IhzffGBlh1S3GOafJhoXJaYyhp8Lt7RBcouThjoF3BuBynuj66aHCY8-OwBX5BnI8wZL-_vC_Ltw_uvm0_NzeeP15t3N43TXVcaI-WoBoeDkdueDaoHNximDUo-dP2owOnRMSe2QqDSXKrRGOS8xW0rZT-08oK8PeUu67DHras_SjDbJfk9pKON4O2_neB3dooH22rDZctqwOv7gBS_r5iLvY1rCnVnK4RqhWSdFlUlTiqXYs4Jx4cJnNlfsOwJlq2w7G9Y9q6aXj3e7cHyB00VyJMg11aYMP2d_Z_Yn0dKpEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246230752</pqid></control><display><type>article</type><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</creator><creatorcontrib>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</creatorcontrib><description>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase ( ctt1 ) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H 2 O 2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H 2 O 2 preconditioning does not alter the resistance of ctt1 Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1 Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45070-w</identifier><identifier>PMID: 31235707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 631/250/2499 ; 631/45/49/1141 ; 631/80/86/2366 ; 692/308/153 ; 692/699/255/1672 ; Antifungal activity ; Antifungal Agents - pharmacology ; Antioxidants ; Azoles ; Azoles - pharmacology ; Catalase ; Catalase - genetics ; Catalase - metabolism ; Clonal deletion ; Clotrimazole ; Drug Resistance, Fungal ; Fluconazole ; Fungi ; Gene Expression Regulation, Fungal ; Gene Knockout Techniques ; Humanities and Social Sciences ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Itraconazole ; Miconazole ; Minimum inhibitory concentration ; Mitochondria ; multidisciplinary ; Opportunist infection ; Posaconazole ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Toxicity ; Yeast</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.9185-10, Article 9185</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</citedby><cites>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</cites><orcidid>0000-0002-3696-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2246230752/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2246230752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Dorival</creatorcontrib><creatorcontrib>Nguyen, Dao</creatorcontrib><creatorcontrib>English, Ann M.</creatorcontrib><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase ( ctt1 ) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H 2 O 2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H 2 O 2 preconditioning does not alter the resistance of ctt1 Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1 Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.</description><subject>13/31</subject><subject>631/250/2499</subject><subject>631/45/49/1141</subject><subject>631/80/86/2366</subject><subject>692/308/153</subject><subject>692/699/255/1672</subject><subject>Antifungal activity</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Azoles</subject><subject>Azoles - pharmacology</subject><subject>Catalase</subject><subject>Catalase - genetics</subject><subject>Catalase - metabolism</subject><subject>Clonal deletion</subject><subject>Clotrimazole</subject><subject>Drug Resistance, Fungal</subject><subject>Fluconazole</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Knockout Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Itraconazole</subject><subject>Miconazole</subject><subject>Minimum inhibitory concentration</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Opportunist infection</subject><subject>Posaconazole</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHEO9WcSX5DQio9KlTgAZ2vinWRdZe1gO1stvx7DllIu-OKR533fGesh5CVnbziT_VVWXJu-Ydw0SrOONXdPyLlgSjdCCvH0UX1GLnO-ZfVoYRQ3z8mZ5ELqjnXnpGxK4dRBgRkyUnDFH3w50iUWDMVDwUyhFuMaJpgp_IhzffGBlh1S3GOafJhoXJaYyhp8Lt7RBcouThjoF3BuBynuj66aHCY8-OwBX5BnI8wZL-_vC_Ltw_uvm0_NzeeP15t3N43TXVcaI-WoBoeDkdueDaoHNximDUo-dP2owOnRMSe2QqDSXKrRGOS8xW0rZT-08oK8PeUu67DHras_SjDbJfk9pKON4O2_neB3dooH22rDZctqwOv7gBS_r5iLvY1rCnVnK4RqhWSdFlUlTiqXYs4Jx4cJnNlfsOwJlq2w7G9Y9q6aXj3e7cHyB00VyJMg11aYMP2d_Z_Yn0dKpEA</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Martins, Dorival</creator><creator>Nguyen, Dao</creator><creator>English, Ann M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3696-7710</orcidid></search><sort><creationdate>20190624</creationdate><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><author>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/31</topic><topic>631/250/2499</topic><topic>631/45/49/1141</topic><topic>631/80/86/2366</topic><topic>692/308/153</topic><topic>692/699/255/1672</topic><topic>Antifungal activity</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Azoles</topic><topic>Azoles - pharmacology</topic><topic>Catalase</topic><topic>Catalase - genetics</topic><topic>Catalase - metabolism</topic><topic>Clonal deletion</topic><topic>Clotrimazole</topic><topic>Drug Resistance, Fungal</topic><topic>Fluconazole</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Knockout Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Itraconazole</topic><topic>Miconazole</topic><topic>Minimum inhibitory concentration</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Opportunist infection</topic><topic>Posaconazole</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Dorival</creatorcontrib><creatorcontrib>Nguyen, Dao</creatorcontrib><creatorcontrib>English, Ann M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Dorival</au><au>Nguyen, Dao</au><au>English, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-24</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9185</spage><epage>10</epage><pages>9185-10</pages><artnum>9185</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase ( ctt1 ) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H 2 O 2 potentiates miconazole 32-fold and fluconazole 4-fold. Since H 2 O 2 preconditioning does not alter the resistance of ctt1 Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast, sod2Δ cells deleted for mitochondrial superoxide dismutase are 4–8-fold more azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the ctt1 Δ mutant has double the Sod2 activity of wild-type cells so ctt1 deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial cta1 or cytosolic sod1 does not alter fluconazole or miconazole potency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31235707</pmid><doi>10.1038/s41598-019-45070-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3696-7710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-06, Vol.9 (1), p.9185-10, Article 9185
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591360
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/31
631/250/2499
631/45/49/1141
631/80/86/2366
692/308/153
692/699/255/1672
Antifungal activity
Antifungal Agents - pharmacology
Antioxidants
Azoles
Azoles - pharmacology
Catalase
Catalase - genetics
Catalase - metabolism
Clonal deletion
Clotrimazole
Drug Resistance, Fungal
Fluconazole
Fungi
Gene Expression Regulation, Fungal
Gene Knockout Techniques
Humanities and Social Sciences
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Itraconazole
Miconazole
Minimum inhibitory concentration
Mitochondria
multidisciplinary
Opportunist infection
Posaconazole
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Science
Science (multidisciplinary)
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Toxicity
Yeast
title Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ctt1%20catalase%20activity%20potentiates%20antifungal%20azoles%20in%20the%20emerging%20opportunistic%20pathogen%20Saccharomyces%20cerevisiae&rft.jtitle=Scientific%20reports&rft.au=Martins,%20Dorival&rft.date=2019-06-24&rft.volume=9&rft.issue=1&rft.spage=9185&rft.epage=10&rft.pages=9185-10&rft.artnum=9185&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45070-w&rft_dat=%3Cproquest_pubme%3E2246230752%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2246230752&rft_id=info:pmid/31235707&rfr_iscdi=true