Loading…
Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae
Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of Saccharomyces cerevisiae to the common antifungals, fluconazole an...
Saved in:
Published in: | Scientific reports 2019-06, Vol.9 (1), p.9185-10, Article 9185 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 9185 |
container_title | Scientific reports |
container_volume | 9 |
creator | Martins, Dorival Nguyen, Dao English, Ann M. |
description | Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of
Saccharomyces cerevisiae
to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (
ctt1
) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H
2
O
2
potentiates miconazole 32-fold and fluconazole 4-fold. Since H
2
O
2
preconditioning does not alter the resistance of
ctt1
Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast,
sod2Δ
cells deleted for mitochondrial superoxide dismutase are 4–8-fold
more
azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the
ctt1
Δ mutant has double the Sod2 activity of wild-type cells so
ctt1
deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial
cta1
or cytosolic
sod1
does not alter fluconazole or miconazole potency. |
doi_str_mv | 10.1038/s41598-019-45070-w |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246230752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CALHEO9WcSX5DQio9KlTgAZ2vinWRdZe1gO1stvx7DllIu-OKR533fGesh5CVnbziT_VVWXJu-Ydw0SrOONXdPyLlgSjdCCvH0UX1GLnO-ZfVoYRQ3z8mZ5ELqjnXnpGxK4dRBgRkyUnDFH3w50iUWDMVDwUyhFuMaJpgp_IhzffGBlh1S3GOafJhoXJaYyhp8Lt7RBcouThjoF3BuBynuj66aHCY8-OwBX5BnI8wZL-_vC_Ltw_uvm0_NzeeP15t3N43TXVcaI-WoBoeDkdueDaoHNximDUo-dP2owOnRMSe2QqDSXKrRGOS8xW0rZT-08oK8PeUu67DHras_SjDbJfk9pKON4O2_neB3dooH22rDZctqwOv7gBS_r5iLvY1rCnVnK4RqhWSdFlUlTiqXYs4Jx4cJnNlfsOwJlq2w7G9Y9q6aXj3e7cHyB00VyJMg11aYMP2d_Z_Yn0dKpEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246230752</pqid></control><display><type>article</type><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</creator><creatorcontrib>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</creatorcontrib><description>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of
Saccharomyces cerevisiae
to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (
ctt1
) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H
2
O
2
potentiates miconazole 32-fold and fluconazole 4-fold. Since H
2
O
2
preconditioning does not alter the resistance of
ctt1
Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast,
sod2Δ
cells deleted for mitochondrial superoxide dismutase are 4–8-fold
more
azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the
ctt1
Δ mutant has double the Sod2 activity of wild-type cells so
ctt1
deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial
cta1
or cytosolic
sod1
does not alter fluconazole or miconazole potency.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-45070-w</identifier><identifier>PMID: 31235707</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 631/250/2499 ; 631/45/49/1141 ; 631/80/86/2366 ; 692/308/153 ; 692/699/255/1672 ; Antifungal activity ; Antifungal Agents - pharmacology ; Antioxidants ; Azoles ; Azoles - pharmacology ; Catalase ; Catalase - genetics ; Catalase - metabolism ; Clonal deletion ; Clotrimazole ; Drug Resistance, Fungal ; Fluconazole ; Fungi ; Gene Expression Regulation, Fungal ; Gene Knockout Techniques ; Humanities and Social Sciences ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Itraconazole ; Miconazole ; Minimum inhibitory concentration ; Mitochondria ; multidisciplinary ; Opportunist infection ; Posaconazole ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Toxicity ; Yeast</subject><ispartof>Scientific reports, 2019-06, Vol.9 (1), p.9185-10, Article 9185</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</citedby><cites>FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</cites><orcidid>0000-0002-3696-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2246230752/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2246230752?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31235707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Dorival</creatorcontrib><creatorcontrib>Nguyen, Dao</creatorcontrib><creatorcontrib>English, Ann M.</creatorcontrib><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of
Saccharomyces cerevisiae
to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (
ctt1
) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H
2
O
2
potentiates miconazole 32-fold and fluconazole 4-fold. Since H
2
O
2
preconditioning does not alter the resistance of
ctt1
Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast,
sod2Δ
cells deleted for mitochondrial superoxide dismutase are 4–8-fold
more
azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the
ctt1
Δ mutant has double the Sod2 activity of wild-type cells so
ctt1
deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial
cta1
or cytosolic
sod1
does not alter fluconazole or miconazole potency.</description><subject>13/31</subject><subject>631/250/2499</subject><subject>631/45/49/1141</subject><subject>631/80/86/2366</subject><subject>692/308/153</subject><subject>692/699/255/1672</subject><subject>Antifungal activity</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Azoles</subject><subject>Azoles - pharmacology</subject><subject>Catalase</subject><subject>Catalase - genetics</subject><subject>Catalase - metabolism</subject><subject>Clonal deletion</subject><subject>Clotrimazole</subject><subject>Drug Resistance, Fungal</subject><subject>Fluconazole</subject><subject>Fungi</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Knockout Techniques</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Itraconazole</subject><subject>Miconazole</subject><subject>Minimum inhibitory concentration</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Opportunist infection</subject><subject>Posaconazole</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CALHEO9WcSX5DQio9KlTgAZ2vinWRdZe1gO1stvx7DllIu-OKR533fGesh5CVnbziT_VVWXJu-Ydw0SrOONXdPyLlgSjdCCvH0UX1GLnO-ZfVoYRQ3z8mZ5ELqjnXnpGxK4dRBgRkyUnDFH3w50iUWDMVDwUyhFuMaJpgp_IhzffGBlh1S3GOafJhoXJaYyhp8Lt7RBcouThjoF3BuBynuj66aHCY8-OwBX5BnI8wZL-_vC_Ltw_uvm0_NzeeP15t3N43TXVcaI-WoBoeDkdueDaoHNximDUo-dP2owOnRMSe2QqDSXKrRGOS8xW0rZT-08oK8PeUu67DHras_SjDbJfk9pKON4O2_neB3dooH22rDZctqwOv7gBS_r5iLvY1rCnVnK4RqhWSdFlUlTiqXYs4Jx4cJnNlfsOwJlq2w7G9Y9q6aXj3e7cHyB00VyJMg11aYMP2d_Z_Yn0dKpEA</recordid><startdate>20190624</startdate><enddate>20190624</enddate><creator>Martins, Dorival</creator><creator>Nguyen, Dao</creator><creator>English, Ann M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3696-7710</orcidid></search><sort><creationdate>20190624</creationdate><title>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</title><author>Martins, Dorival ; Nguyen, Dao ; English, Ann M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/31</topic><topic>631/250/2499</topic><topic>631/45/49/1141</topic><topic>631/80/86/2366</topic><topic>692/308/153</topic><topic>692/699/255/1672</topic><topic>Antifungal activity</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Azoles</topic><topic>Azoles - pharmacology</topic><topic>Catalase</topic><topic>Catalase - genetics</topic><topic>Catalase - metabolism</topic><topic>Clonal deletion</topic><topic>Clotrimazole</topic><topic>Drug Resistance, Fungal</topic><topic>Fluconazole</topic><topic>Fungi</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Knockout Techniques</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Itraconazole</topic><topic>Miconazole</topic><topic>Minimum inhibitory concentration</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Opportunist infection</topic><topic>Posaconazole</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Dorival</creatorcontrib><creatorcontrib>Nguyen, Dao</creatorcontrib><creatorcontrib>English, Ann M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Dorival</au><au>Nguyen, Dao</au><au>English, Ann M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-06-24</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>9185</spage><epage>10</epage><pages>9185-10</pages><artnum>9185</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Fungi respond to antifungal drugs by increasing their antioxidant stress response. How this impacts antifungal efficacy remains controversial and not well understood. Here we examine the role of catalase activity in the resistance of
Saccharomyces cerevisiae
to the common antifungals, fluconazole and miconazole, for which we report minimum inhibitory concentrations (MICs) of 104 and 19 μM, respectively. At sub-MIC concentrations, fluconazole and miconazole stimulate catalase activity 2-3-fold but, unexpectedly, deletion of cytosolic catalase (
ctt1
) makes cells more resistant to these azoles and to clotrimazole, itraconazole and posaconazole. On the other hand, upregulating Ctt1 activity by preconditioning with 0.2 mM H
2
O
2
potentiates miconazole 32-fold and fluconazole 4-fold. Since H
2
O
2
preconditioning does not alter the resistance of
ctt1
Δ cells, which possess negligible catalase activity, we link azole potentiation with Ctt1 upregulation. In contrast,
sod2Δ
cells deleted for mitochondrial superoxide dismutase are 4–8-fold
more
azole sensitive than wild-type cells, revealing that Sod2 activity protects cells against azole toxicity. In fact, the
ctt1
Δ mutant has double the Sod2 activity of wild-type cells so
ctt1
deletion increases azole resistance in part by Sod2 upregulation. Notably, deletion of peroxisomal/mitochondrial
cta1
or cytosolic
sod1
does not alter fluconazole or miconazole potency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31235707</pmid><doi>10.1038/s41598-019-45070-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3696-7710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-06, Vol.9 (1), p.9185-10, Article 9185 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6591360 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/31 631/250/2499 631/45/49/1141 631/80/86/2366 692/308/153 692/699/255/1672 Antifungal activity Antifungal Agents - pharmacology Antioxidants Azoles Azoles - pharmacology Catalase Catalase - genetics Catalase - metabolism Clonal deletion Clotrimazole Drug Resistance, Fungal Fluconazole Fungi Gene Expression Regulation, Fungal Gene Knockout Techniques Humanities and Social Sciences Hydrogen peroxide Hydrogen Peroxide - metabolism Itraconazole Miconazole Minimum inhibitory concentration Mitochondria multidisciplinary Opportunist infection Posaconazole Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) Superoxide dismutase Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Toxicity Yeast |
title | Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ctt1%20catalase%20activity%20potentiates%20antifungal%20azoles%20in%20the%20emerging%20opportunistic%20pathogen%20Saccharomyces%20cerevisiae&rft.jtitle=Scientific%20reports&rft.au=Martins,%20Dorival&rft.date=2019-06-24&rft.volume=9&rft.issue=1&rft.spage=9185&rft.epage=10&rft.pages=9185-10&rft.artnum=9185&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-45070-w&rft_dat=%3Cproquest_pubme%3E2246230752%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-933f4bceb93d80b48acb9059e31b78f4ac5fc0c2d22e45134f99e116ed6338b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2246230752&rft_id=info:pmid/31235707&rfr_iscdi=true |