Loading…

S-Nitrosylation of Divalent Metal Transporter 1 Enhances Iron Uptake to Mediate Loss of Dopaminergic Neurons and Motoric Deficit

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 coul...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2018-09, Vol.38 (39), p.8364-8377
Main Authors: Liu, Chao, Zhang, Cheng-Wu, Lo, Shun Qiang, Ang, Seok Ting, Chew, Katherine Chee Meng, Yu, Dejie, Chai, Bing Han, Tan, Bobby, Tsang, Fai, Tai, Yee Kit, Tan, Bryce Wei Quan, Liang, Mui Cheng, Tan, Hwee Tong, Tang, Jia Ying, Lai, Mitchell Kim Peng, Chua, John Jia En, Chung, Maxey Ching Ming, Khanna, Sanjay, Lim, Kah-Leong, Soong, Tuck Wah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn or Fe uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss. Neuroinflammation and high cytoplasmic Fe levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3262-17.2018