Loading…

Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex

Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2017-08, Vol.37 (35), p.8534-8548
Main Authors: Song, Qian, Zheng, Hong-Wei, Li, Xu-Hui, Huganir, Richard L, Kuner, Thomas, Zhuo, Min, Chen, Tao
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43
cites
container_end_page 8548
container_issue 35
container_start_page 8534
container_title The Journal of neuroscience
container_volume 37
creator Song, Qian
Zheng, Hong-Wei
Li, Xu-Hui
Huganir, Richard L
Kuner, Thomas
Zhuo, Min
Chen, Tao
description Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC. Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.
doi_str_mv 10.1523/jneurosci.0925-17.2017
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094485429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</originalsourceid><addsrcrecordid>eNpdkctvEzEQhy1ERdPCv1CtxIXLBj_3cUGKokKLQhv1cba83tnEYWOntrePG386XtJWwGkO8803M_ohdELwlAjKPm8sDN4Fbaa4piIn5ZRiUr5Bk9Stc8oxeYsmmJY4L3jJD9FRCBuMcZmgd-iQVmUhGGMT9OsaetDR3EO2XLuwWzv_1KtonM1cl81-LGfZFWjYReezubPRm2aIELLosriG7ALig_M_R3bh7Cq_Ab_Nli6CjWZvMfYPOLMRvBklxq6GtAGSzkd4fI8OOtUH-PBcj9Ht19Ob-Vm-uPx2Pp8tci0KEnPREkJBa1o3oLigrapFyZuKUdVh1lBWiLrQSrOaVBRjUTSKsVZwrbtOtx1nx-jL3rsbmi20Ol3oVS933myVf5JOGflvx5q1XLl7OYqrkiXBp2eBd3cDhCi3Jmjoe2XBDUGSlIMguKpwQj_-h27c4G16T1Jcc14JTutEFXtKpyCDh-71GILlGLL8fnF6e3V5PT-XY8iSlHIMOQ2e_P3K69hLquw3MsannA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094485429</pqid></control><display><type>article</type><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><source>PubMed Central Free</source><creator>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</creator><creatorcontrib>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</creatorcontrib><description>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC. Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0925-17.2017</identifier><identifier>PMID: 28765333</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Ca2+/calmodulin-dependent protein kinase II ; Cortex (cingulate) ; Cortex (temporal) ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Data acquisition ; Glutamic acid receptors (ionotropic) ; Gyrus Cinguli - physiology ; Hippocampus ; Localization ; Long-term potentiation ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; N-Methyl-D-aspartic acid receptors ; Nerve Net - physiology ; Phosphorylation ; Protein kinase A ; Protein kinase C ; Protein Kinase C - metabolism ; Receptors, AMPA - metabolism ; Serine ; Signal Transduction - physiology ; Synaptic transmission ; Visualization ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>The Journal of neuroscience, 2017-08, Vol.37 (35), p.8534-8548</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/378534-15$15.00/0.</rights><rights>Copyright Society for Neuroscience Aug 30, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/378534-15$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</citedby><orcidid>0000-0003-1896-9031 ; 0000-0001-9783-5183 ; 0000-0003-1956-0553 ; 0000-0003-4376-6252 ; 0000-0001-9062-3241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596873/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596873/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28765333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Zheng, Hong-Wei</creatorcontrib><creatorcontrib>Li, Xu-Hui</creatorcontrib><creatorcontrib>Huganir, Richard L</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Zhuo, Min</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC. Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</description><subject>Animals</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Cortex (cingulate)</subject><subject>Cortex (temporal)</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Data acquisition</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Gyrus Cinguli - physiology</subject><subject>Hippocampus</subject><subject>Localization</subject><subject>Long-term potentiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Net - physiology</subject><subject>Phosphorylation</subject><subject>Protein kinase A</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Receptors, AMPA - metabolism</subject><subject>Serine</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic transmission</subject><subject>Visualization</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctvEzEQhy1ERdPCv1CtxIXLBj_3cUGKokKLQhv1cba83tnEYWOntrePG386XtJWwGkO8803M_ohdELwlAjKPm8sDN4Fbaa4piIn5ZRiUr5Bk9Stc8oxeYsmmJY4L3jJD9FRCBuMcZmgd-iQVmUhGGMT9OsaetDR3EO2XLuwWzv_1KtonM1cl81-LGfZFWjYReezubPRm2aIELLosriG7ALig_M_R3bh7Cq_Ab_Nli6CjWZvMfYPOLMRvBklxq6GtAGSzkd4fI8OOtUH-PBcj9Ht19Ob-Vm-uPx2Pp8tci0KEnPREkJBa1o3oLigrapFyZuKUdVh1lBWiLrQSrOaVBRjUTSKsVZwrbtOtx1nx-jL3rsbmi20Ol3oVS933myVf5JOGflvx5q1XLl7OYqrkiXBp2eBd3cDhCi3Jmjoe2XBDUGSlIMguKpwQj_-h27c4G16T1Jcc14JTutEFXtKpyCDh-71GILlGLL8fnF6e3V5PT-XY8iSlHIMOQ2e_P3K69hLquw3MsannA</recordid><startdate>20170830</startdate><enddate>20170830</enddate><creator>Song, Qian</creator><creator>Zheng, Hong-Wei</creator><creator>Li, Xu-Hui</creator><creator>Huganir, Richard L</creator><creator>Kuner, Thomas</creator><creator>Zhuo, Min</creator><creator>Chen, Tao</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1896-9031</orcidid><orcidid>https://orcid.org/0000-0001-9783-5183</orcidid><orcidid>https://orcid.org/0000-0003-1956-0553</orcidid><orcidid>https://orcid.org/0000-0003-4376-6252</orcidid><orcidid>https://orcid.org/0000-0001-9062-3241</orcidid></search><sort><creationdate>20170830</creationdate><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><author>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Cortex (cingulate)</topic><topic>Cortex (temporal)</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Data acquisition</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Gyrus Cinguli - physiology</topic><topic>Hippocampus</topic><topic>Localization</topic><topic>Long-term potentiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Net - physiology</topic><topic>Phosphorylation</topic><topic>Protein kinase A</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Receptors, AMPA - metabolism</topic><topic>Serine</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic transmission</topic><topic>Visualization</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Zheng, Hong-Wei</creatorcontrib><creatorcontrib>Li, Xu-Hui</creatorcontrib><creatorcontrib>Huganir, Richard L</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Zhuo, Min</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Qian</au><au>Zheng, Hong-Wei</au><au>Li, Xu-Hui</au><au>Huganir, Richard L</au><au>Kuner, Thomas</au><au>Zhuo, Min</au><au>Chen, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-08-30</date><risdate>2017</risdate><volume>37</volume><issue>35</issue><spage>8534</spage><epage>8548</epage><pages>8534-8548</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC. Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28765333</pmid><doi>10.1523/jneurosci.0925-17.2017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1896-9031</orcidid><orcidid>https://orcid.org/0000-0001-9783-5183</orcidid><orcidid>https://orcid.org/0000-0003-1956-0553</orcidid><orcidid>https://orcid.org/0000-0003-4376-6252</orcidid><orcidid>https://orcid.org/0000-0001-9062-3241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2017-08, Vol.37 (35), p.8534-8548
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596873
source PubMed Central Free
subjects Animals
Ca2+/calmodulin-dependent protein kinase II
Cortex (cingulate)
Cortex (temporal)
Cyclic AMP-Dependent Protein Kinases - metabolism
Data acquisition
Glutamic acid receptors (ionotropic)
Gyrus Cinguli - physiology
Hippocampus
Localization
Long-term potentiation
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
N-Methyl-D-aspartic acid receptors
Nerve Net - physiology
Phosphorylation
Protein kinase A
Protein kinase C
Protein Kinase C - metabolism
Receptors, AMPA - metabolism
Serine
Signal Transduction - physiology
Synaptic transmission
Visualization
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Phosphorylation%20of%20AMPA%20Receptor%20Contributes%20to%20the%20Network%20of%20Long-Term%20Potentiation%20in%20the%20Anterior%20Cingulate%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Song,%20Qian&rft.date=2017-08-30&rft.volume=37&rft.issue=35&rft.spage=8534&rft.epage=8548&rft.pages=8534-8548&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0925-17.2017&rft_dat=%3Cproquest_pubme%3E2094485429%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094485429&rft_id=info:pmid/28765333&rfr_iscdi=true