Loading…
Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex
Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP...
Saved in:
Published in: | The Journal of neuroscience 2017-08, Vol.37 (35), p.8534-8548 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43 |
---|---|
cites | |
container_end_page | 8548 |
container_issue | 35 |
container_start_page | 8534 |
container_title | The Journal of neuroscience |
container_volume | 37 |
creator | Song, Qian Zheng, Hong-Wei Li, Xu-Hui Huganir, Richard L Kuner, Thomas Zhuo, Min Chen, Tao |
description | Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC.
Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC. |
doi_str_mv | 10.1523/jneurosci.0925-17.2017 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094485429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</originalsourceid><addsrcrecordid>eNpdkctvEzEQhy1ERdPCv1CtxIXLBj_3cUGKokKLQhv1cba83tnEYWOntrePG386XtJWwGkO8803M_ohdELwlAjKPm8sDN4Fbaa4piIn5ZRiUr5Bk9Stc8oxeYsmmJY4L3jJD9FRCBuMcZmgd-iQVmUhGGMT9OsaetDR3EO2XLuwWzv_1KtonM1cl81-LGfZFWjYReezubPRm2aIELLosriG7ALig_M_R3bh7Cq_Ab_Nli6CjWZvMfYPOLMRvBklxq6GtAGSzkd4fI8OOtUH-PBcj9Ht19Ob-Vm-uPx2Pp8tci0KEnPREkJBa1o3oLigrapFyZuKUdVh1lBWiLrQSrOaVBRjUTSKsVZwrbtOtx1nx-jL3rsbmi20Ol3oVS933myVf5JOGflvx5q1XLl7OYqrkiXBp2eBd3cDhCi3Jmjoe2XBDUGSlIMguKpwQj_-h27c4G16T1Jcc14JTutEFXtKpyCDh-71GILlGLL8fnF6e3V5PT-XY8iSlHIMOQ2e_P3K69hLquw3MsannA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094485429</pqid></control><display><type>article</type><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><source>PubMed Central Free</source><creator>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</creator><creatorcontrib>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</creatorcontrib><description>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC.
Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0925-17.2017</identifier><identifier>PMID: 28765333</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Ca2+/calmodulin-dependent protein kinase II ; Cortex (cingulate) ; Cortex (temporal) ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Data acquisition ; Glutamic acid receptors (ionotropic) ; Gyrus Cinguli - physiology ; Hippocampus ; Localization ; Long-term potentiation ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; N-Methyl-D-aspartic acid receptors ; Nerve Net - physiology ; Phosphorylation ; Protein kinase A ; Protein kinase C ; Protein Kinase C - metabolism ; Receptors, AMPA - metabolism ; Serine ; Signal Transduction - physiology ; Synaptic transmission ; Visualization ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>The Journal of neuroscience, 2017-08, Vol.37 (35), p.8534-8548</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/378534-15$15.00/0.</rights><rights>Copyright Society for Neuroscience Aug 30, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/378534-15$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</citedby><orcidid>0000-0003-1896-9031 ; 0000-0001-9783-5183 ; 0000-0003-1956-0553 ; 0000-0003-4376-6252 ; 0000-0001-9062-3241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596873/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596873/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28765333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Zheng, Hong-Wei</creatorcontrib><creatorcontrib>Li, Xu-Hui</creatorcontrib><creatorcontrib>Huganir, Richard L</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Zhuo, Min</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC.
Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</description><subject>Animals</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Cortex (cingulate)</subject><subject>Cortex (temporal)</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Data acquisition</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Gyrus Cinguli - physiology</subject><subject>Hippocampus</subject><subject>Localization</subject><subject>Long-term potentiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Nerve Net - physiology</subject><subject>Phosphorylation</subject><subject>Protein kinase A</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Receptors, AMPA - metabolism</subject><subject>Serine</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic transmission</subject><subject>Visualization</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkctvEzEQhy1ERdPCv1CtxIXLBj_3cUGKokKLQhv1cba83tnEYWOntrePG386XtJWwGkO8803M_ohdELwlAjKPm8sDN4Fbaa4piIn5ZRiUr5Bk9Stc8oxeYsmmJY4L3jJD9FRCBuMcZmgd-iQVmUhGGMT9OsaetDR3EO2XLuwWzv_1KtonM1cl81-LGfZFWjYReezubPRm2aIELLosriG7ALig_M_R3bh7Cq_Ab_Nli6CjWZvMfYPOLMRvBklxq6GtAGSzkd4fI8OOtUH-PBcj9Ht19Ob-Vm-uPx2Pp8tci0KEnPREkJBa1o3oLigrapFyZuKUdVh1lBWiLrQSrOaVBRjUTSKsVZwrbtOtx1nx-jL3rsbmi20Ol3oVS933myVf5JOGflvx5q1XLl7OYqrkiXBp2eBd3cDhCi3Jmjoe2XBDUGSlIMguKpwQj_-h27c4G16T1Jcc14JTutEFXtKpyCDh-71GILlGLL8fnF6e3V5PT-XY8iSlHIMOQ2e_P3K69hLquw3MsannA</recordid><startdate>20170830</startdate><enddate>20170830</enddate><creator>Song, Qian</creator><creator>Zheng, Hong-Wei</creator><creator>Li, Xu-Hui</creator><creator>Huganir, Richard L</creator><creator>Kuner, Thomas</creator><creator>Zhuo, Min</creator><creator>Chen, Tao</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1896-9031</orcidid><orcidid>https://orcid.org/0000-0001-9783-5183</orcidid><orcidid>https://orcid.org/0000-0003-1956-0553</orcidid><orcidid>https://orcid.org/0000-0003-4376-6252</orcidid><orcidid>https://orcid.org/0000-0001-9062-3241</orcidid></search><sort><creationdate>20170830</creationdate><title>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</title><author>Song, Qian ; Zheng, Hong-Wei ; Li, Xu-Hui ; Huganir, Richard L ; Kuner, Thomas ; Zhuo, Min ; Chen, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Cortex (cingulate)</topic><topic>Cortex (temporal)</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Data acquisition</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Gyrus Cinguli - physiology</topic><topic>Hippocampus</topic><topic>Localization</topic><topic>Long-term potentiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Nerve Net - physiology</topic><topic>Phosphorylation</topic><topic>Protein kinase A</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Receptors, AMPA - metabolism</topic><topic>Serine</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic transmission</topic><topic>Visualization</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Qian</creatorcontrib><creatorcontrib>Zheng, Hong-Wei</creatorcontrib><creatorcontrib>Li, Xu-Hui</creatorcontrib><creatorcontrib>Huganir, Richard L</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Zhuo, Min</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Qian</au><au>Zheng, Hong-Wei</au><au>Li, Xu-Hui</au><au>Huganir, Richard L</au><au>Kuner, Thomas</au><au>Zhuo, Min</au><au>Chen, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-08-30</date><risdate>2017</risdate><volume>37</volume><issue>35</issue><spage>8534</spage><epage>8548</epage><pages>8534-8548</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Phosphorylation of AMPA receptor GluA1 plays important roles in synaptic potentiation. Most previous studies have been performed in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. Here we investigated the involvement of the phosphorylation of GluA1 in the LTP in the anterior cingulate cortex (ACC) using mice with a GluA1 knock-in mutation at the PKA phosphorylation site serine 845 (s845A) or CaMKII/PKC phosphorylation site serine 831 (s831A). The network LTP, which is constructed by multiple recordings of LTP at different locations within the ACC, was also investigated. We found that the expression of LTP and network LTP was significantly impaired in the s845A mice, but not in the s831A mice. By contrast, basal synaptic transmission and NMDA receptor-mediated responses were not affected. Furthermore, to uncover potential information under the current acquired data, a new method for reconstruction and better visualization of the signals was developed to observe the spatial localizations and dynamic temporal changes of fEPSP signals and multiple LTP responses within the ACC circuit. Our results provide strong evidence that PKA phosphorylation of the GluA1 is important for the network LTP expression in the ACC.
Previous studies have shown that PKA and PKC phosphorylation of AMPA receptor GluA1 plays critical roles in LTP in the hippocampus, while the roles of GluA1 phosphorylation in the cortex remain unknown. In the present study, by combining a 64-channel multielectrode system and a novel analysis and visualization method, we observed the accurate spatial localization and dynamic temporal changes of network fEPSP signals and LTP responses within the ACC circuit and found that PKA phosphorylation, but not PKC phosphorylation, of the GluA1 is required for LTP in the ACC.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28765333</pmid><doi>10.1523/jneurosci.0925-17.2017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1896-9031</orcidid><orcidid>https://orcid.org/0000-0001-9783-5183</orcidid><orcidid>https://orcid.org/0000-0003-1956-0553</orcidid><orcidid>https://orcid.org/0000-0003-4376-6252</orcidid><orcidid>https://orcid.org/0000-0001-9062-3241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2017-08, Vol.37 (35), p.8534-8548 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596873 |
source | PubMed Central Free |
subjects | Animals Ca2+/calmodulin-dependent protein kinase II Cortex (cingulate) Cortex (temporal) Cyclic AMP-Dependent Protein Kinases - metabolism Data acquisition Glutamic acid receptors (ionotropic) Gyrus Cinguli - physiology Hippocampus Localization Long-term potentiation Male Mice Mice, Inbred C57BL Mice, Transgenic N-Methyl-D-aspartic acid receptors Nerve Net - physiology Phosphorylation Protein kinase A Protein kinase C Protein Kinase C - metabolism Receptors, AMPA - metabolism Serine Signal Transduction - physiology Synaptic transmission Visualization α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Phosphorylation%20of%20AMPA%20Receptor%20Contributes%20to%20the%20Network%20of%20Long-Term%20Potentiation%20in%20the%20Anterior%20Cingulate%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Song,%20Qian&rft.date=2017-08-30&rft.volume=37&rft.issue=35&rft.spage=8534&rft.epage=8548&rft.pages=8534-8548&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0925-17.2017&rft_dat=%3Cproquest_pubme%3E2094485429%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-5d112ecc29bea452da9574b832af03b236596cac391820056ba33d54ccffcdf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094485429&rft_id=info:pmid/28765333&rfr_iscdi=true |