Loading…

MicroRNAs in porcine uterus and serum are affected by zearalenone and represent a new target for mycotoxin biomarker discovery

The mycotoxin zearalenone (ZEN) poses a risk to animal health because of its estrogenic effects. Diagnosis of ZEN-induced disorders remains challenging due to the lack of appropriate biomarkers. In this regard, circulating microRNAs (small non-coding RNAs) have remarkable potential, as they can serv...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-06, Vol.9 (1), p.9408-14, Article 9408
Main Authors: Grenier, Bertrand, Hackl, Matthias, Skalicky, Susanna, Thamhesl, Michaela, Moll, Wulf-Dieter, Berrios, Roger, Schatzmayr, Gerd, Nagl, Veronika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mycotoxin zearalenone (ZEN) poses a risk to animal health because of its estrogenic effects. Diagnosis of ZEN-induced disorders remains challenging due to the lack of appropriate biomarkers. In this regard, circulating microRNAs (small non-coding RNAs) have remarkable potential, as they can serve as indicators for pathological processes in tissue. Thus, we combined untargeted and targeted transcriptomics approaches to investigate the effects of ZEN on the microRNA expression in porcine uterus, jejunum and serum, respectively. To this end, twenty-four piglets received uncontaminated feed (Control) or feed containing 0.17 mg/kg ZEN (ZEN low), 1.46 mg/kg ZEN (ZEN medium) and 4.58 mg/kg ZEN (ZEN high). After 28 days, the microRNA expression in the jejunum remained unaffected, while significant changes in the uterine microRNA profile were observed. Importantly, 14 microRNAs were commonly and dose-dependently affected in both the ZEN medium and ZEN high group, including microRNAs from the miR-503 cluster (i.e. ssc-miR-424-5p, ssc-miR-450a, ssc-miR-450b-5p, ssc-miR-450c-5p, ssc-miR-503 and ssc-miR-542-3p). Predicted target genes for those microRNAs are associated with regulation of gene expression and signal transduction (e.g. cell cycle). Although the effects in serum were less pronounced, receiver operating characteristic analysis revealed that several microRNA ratios were able to discriminate properly between non-exposed and ZEN-exposed pigs (e.g. ssc-miR-135a-5p/ssc-miR-432-5p, ssc-miR-542-3p/ssc-miR-493-3p). This work sheds new light on the molecular mechanisms of ZEN, and fosters biomarker discovery.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-45784-x