Loading…
Correlation between Pupil Size and Subjective Passage of Time in Non-Human Primates
Our daily experience of time is strongly influenced by internal states, such as arousal, attention, and mood. However, the underlying neuronal mechanism remains largely unknown. To investigate this, we recorded pupil diameter, which is closely linked to internal factors and neuromodulatory signaling...
Saved in:
Published in: | The Journal of neuroscience 2016-11, Vol.36 (44), p.11331-11337 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our daily experience of time is strongly influenced by internal states, such as arousal, attention, and mood. However, the underlying neuronal mechanism remains largely unknown. To investigate this, we recorded pupil diameter, which is closely linked to internal factors and neuromodulatory signaling, in monkeys performing the oculomotor version of the time production paradigm. In the self-timed saccade task, animals were required to make a memory-guided saccade during a predetermined time interval following a visual cue. We found that pupil diameter was negatively correlated with trial-by-trial latency of self-timed saccades. Because no significant correlation was found for visually guided saccades, correlation of self-timed saccades could not be explained solely by the facilitation of saccade execution. As the reward amount was manipulated, pupil diameter and saccade latency altered in opposite directions and the magnitudes of modulation correlated strongly across sessions, further supporting the close link between pupil diameter and the subjective passage of time. When the animals were trained to produce two different intervals depending on the instruction, the pupil size again correlated with the trial-by-trial variation of saccade latency in each condition; however, pupil diameter differed significantly for saccades with similar latencies generated under different conditions. Our results indicate that internal brain states indexed by pupil diameter, which parallel noradrenergic neuronal activity (Aston-Jones and Cohen, 2005), may bias trial-by-trial variation in the subjective passage of time.
Daily experience of time is strongly influenced by our internal state, but the underlying neuronal mechanism remains elusive. Here we demonstrate that pupil diameter is negatively correlated with subjective elapsed time in monkeys performing an oculomotor version of the time production task. When the animals reported two different intervals depending on the instruction, pupil size was correlated with reported timing in each condition but differed for similar timing under different conditions. Given the close correlation between pupil diameter and noradrenergic signaling reported previously, our data indicate that brain states probed by pupil diameter and noradrenergic neuronal activity might modulate subjective passage of time. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.2533-16.2016 |