Loading…

A review of statistical methods in imaging genetics

With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse het...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of statistics 2019-03, Vol.47 (1), p.108-131
Main Authors: NATHOO, Farouk S., KONG, Linglong, ZHU, Hongtu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663
cites cdi_FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663
container_end_page 131
container_issue 1
container_start_page 108
container_title Canadian journal of statistics
container_volume 47
creator NATHOO, Farouk S.
KONG, Linglong
ZHU, Hongtu
description With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer’s disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD²) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD², various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research. Avec l’évolution rapide de la technologie, de nombreuses études biomédicales collectent des jeux de données massifs comportant un volume d’images multi-modales et des informations cliniques, génétiques et neurocognitives sur des cohortes de plus en plus grandes. Réussir à en extraire puis à intégrer simultanément des informations riches et hétérogènes en génomique ou en imagerie cérébrale pourrait transformer notre compréhension des conséquences de la génétique sur les structures du cerveau et ses fonctions, cognitives ou autres, ainsi que sur les maladies cérébrales affectant les individus au cours de leur vie. Cette compréhension est cruciale pour le diagnostic, la prévention et le traitement de nombreux troubles cérébraux complexes (comme la schizophrénie et la maladie d’Alzheimer). L’analyse conjointe de phénotypes mesurés par l’imagerie en haute dimension avec des données génétiques également en haute dimen
doi_str_mv 10.1002/cjs.11487
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6605768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48744692</jstor_id><sourcerecordid>48744692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663</originalsourceid><addsrcrecordid>eNp1kU9PGzEQxa2KqqTQQz8AaCUu7WHBHv9bX5CiCGgrJA6AxM0y3tngaLMGewPi29dtICpIPc3h_ebpzTxCvjJ6yCiFI7_Ih4yJRn8gE6ZpUxshb7bIhHJmaqlBbJPPOS8o5ZIx-ES2OQMtjIQJ4dMq4WPApyp2VR7dGPIYvOurJY53sc1VGKqwdPMwzKs5DljEvEs-dq7P-OVl7pDr05Or2Y_6_OLs52x6XnuhpK5RUGWEQYemc0BBm1vvPIWGaykVk5oDa42iWrfetWCEw05577oWQBil-A45Xvver26X2HocxuR6e59KoPRsowv2rTKEOzuPj1YpKrVqisG3F4MUH1aYR7sM2WPfuwHjKlsAyaFhUkJBD96hi7hKQznPAmuk0lIzXqjva8qnmHPCbhOGUfunCluqsH-rKOz-v-k35OvvC3C0Bp5Cj8__d7KzX5evlnvrjUUeY9psFEkIZYD_BsL-m44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185675713</pqid></control><display><type>article</type><title>A review of statistical methods in imaging genetics</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>NATHOO, Farouk S. ; KONG, Linglong ; ZHU, Hongtu</creator><creatorcontrib>NATHOO, Farouk S. ; KONG, Linglong ; ZHU, Hongtu ; for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><description>With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer’s disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD²) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD², various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research. Avec l’évolution rapide de la technologie, de nombreuses études biomédicales collectent des jeux de données massifs comportant un volume d’images multi-modales et des informations cliniques, génétiques et neurocognitives sur des cohortes de plus en plus grandes. Réussir à en extraire puis à intégrer simultanément des informations riches et hétérogènes en génomique ou en imagerie cérébrale pourrait transformer notre compréhension des conséquences de la génétique sur les structures du cerveau et ses fonctions, cognitives ou autres, ainsi que sur les maladies cérébrales affectant les individus au cours de leur vie. Cette compréhension est cruciale pour le diagnostic, la prévention et le traitement de nombreux troubles cérébraux complexes (comme la schizophrénie et la maladie d’Alzheimer). L’analyse conjointe de phénotypes mesurés par l’imagerie en haute dimension avec des données génétiques également en haute dimension mène à un problème de mégadonnées au carré (MD²), présentant des défis computationnels et théoriques. Au-delà de la haute dimension de données MD², les mesures d’imagerie médicale comportent souvent une dépendance spatiale et une apparence lisse, puis les marqueurs génétiques peuvent posséder une structure de dépendance naturelle émergeant du déséquilibre des liens. Les auteurs décrivent le développement récent de plusieurs techniques statistiques pour l’imagerie en génétique, notamment les approches univariée massive et par voxel, la régression de rang réduit, les modèles de mélange, et la régression multi-tâches pour groupes épars. Ils souhaitent ainsi encourager d’autres membres de la communauté statistique à contribuer à cet excitant nouveau champ de recherche.</description><identifier>ISSN: 0319-5724</identifier><identifier>EISSN: 1708-945X</identifier><identifier>DOI: 10.1002/cjs.11487</identifier><identifier>PMID: 31274952</identifier><language>eng</language><publisher>Hoboken, USA: Wiley</publisher><subject>Alzheimer's disease ; Brain ; Brain structure ; Clinical information ; Cognitive functioning ; Data management ; Datasets ; Dependence ; Diagnostic systems ; Genetics ; Genomics ; Group sparse regression ; JEL Code: Primary 62F15 ; Massifs ; Massive data points ; Medical diagnosis ; Medical imaging ; multivariate high‐dimensional regression ; Neuroimaging ; neuroimaging phenotype ; Neurology ; Phenotypes ; reduced rank regression ; Regression analysis ; Schizophrenia ; secondary 62G10 ; single nucleotide polymorphism ; Smoothness ; Statistical analysis ; Statistical methods ; Technology ; Variants</subject><ispartof>Canadian journal of statistics, 2019-03, Vol.47 (1), p.108-131</ispartof><rights>2019 Statistical Society of Canada / Société statistique du Canada</rights><rights>2019 Statistical Society of Canada</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663</citedby><cites>FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48744692$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48744692$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,33223,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31274952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NATHOO, Farouk S.</creatorcontrib><creatorcontrib>KONG, Linglong</creatorcontrib><creatorcontrib>ZHU, Hongtu</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><title>A review of statistical methods in imaging genetics</title><title>Canadian journal of statistics</title><addtitle>Can J Stat</addtitle><description>With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer’s disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD²) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD², various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research. Avec l’évolution rapide de la technologie, de nombreuses études biomédicales collectent des jeux de données massifs comportant un volume d’images multi-modales et des informations cliniques, génétiques et neurocognitives sur des cohortes de plus en plus grandes. Réussir à en extraire puis à intégrer simultanément des informations riches et hétérogènes en génomique ou en imagerie cérébrale pourrait transformer notre compréhension des conséquences de la génétique sur les structures du cerveau et ses fonctions, cognitives ou autres, ainsi que sur les maladies cérébrales affectant les individus au cours de leur vie. Cette compréhension est cruciale pour le diagnostic, la prévention et le traitement de nombreux troubles cérébraux complexes (comme la schizophrénie et la maladie d’Alzheimer). L’analyse conjointe de phénotypes mesurés par l’imagerie en haute dimension avec des données génétiques également en haute dimension mène à un problème de mégadonnées au carré (MD²), présentant des défis computationnels et théoriques. Au-delà de la haute dimension de données MD², les mesures d’imagerie médicale comportent souvent une dépendance spatiale et une apparence lisse, puis les marqueurs génétiques peuvent posséder une structure de dépendance naturelle émergeant du déséquilibre des liens. Les auteurs décrivent le développement récent de plusieurs techniques statistiques pour l’imagerie en génétique, notamment les approches univariée massive et par voxel, la régression de rang réduit, les modèles de mélange, et la régression multi-tâches pour groupes épars. Ils souhaitent ainsi encourager d’autres membres de la communauté statistique à contribuer à cet excitant nouveau champ de recherche.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Brain structure</subject><subject>Clinical information</subject><subject>Cognitive functioning</subject><subject>Data management</subject><subject>Datasets</subject><subject>Dependence</subject><subject>Diagnostic systems</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Group sparse regression</subject><subject>JEL Code: Primary 62F15</subject><subject>Massifs</subject><subject>Massive data points</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>multivariate high‐dimensional regression</subject><subject>Neuroimaging</subject><subject>neuroimaging phenotype</subject><subject>Neurology</subject><subject>Phenotypes</subject><subject>reduced rank regression</subject><subject>Regression analysis</subject><subject>Schizophrenia</subject><subject>secondary 62G10</subject><subject>single nucleotide polymorphism</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Technology</subject><subject>Variants</subject><issn>0319-5724</issn><issn>1708-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kU9PGzEQxa2KqqTQQz8AaCUu7WHBHv9bX5CiCGgrJA6AxM0y3tngaLMGewPi29dtICpIPc3h_ebpzTxCvjJ6yCiFI7_Ih4yJRn8gE6ZpUxshb7bIhHJmaqlBbJPPOS8o5ZIx-ES2OQMtjIQJ4dMq4WPApyp2VR7dGPIYvOurJY53sc1VGKqwdPMwzKs5DljEvEs-dq7P-OVl7pDr05Or2Y_6_OLs52x6XnuhpK5RUGWEQYemc0BBm1vvPIWGaykVk5oDa42iWrfetWCEw05577oWQBil-A45Xvver26X2HocxuR6e59KoPRsowv2rTKEOzuPj1YpKrVqisG3F4MUH1aYR7sM2WPfuwHjKlsAyaFhUkJBD96hi7hKQznPAmuk0lIzXqjva8qnmHPCbhOGUfunCluqsH-rKOz-v-k35OvvC3C0Bp5Cj8__d7KzX5evlnvrjUUeY9psFEkIZYD_BsL-m44</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>NATHOO, Farouk S.</creator><creator>KONG, Linglong</creator><creator>ZHU, Hongtu</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>H8D</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201903</creationdate><title>A review of statistical methods in imaging genetics</title><author>NATHOO, Farouk S. ; KONG, Linglong ; ZHU, Hongtu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Brain structure</topic><topic>Clinical information</topic><topic>Cognitive functioning</topic><topic>Data management</topic><topic>Datasets</topic><topic>Dependence</topic><topic>Diagnostic systems</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Group sparse regression</topic><topic>JEL Code: Primary 62F15</topic><topic>Massifs</topic><topic>Massive data points</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>multivariate high‐dimensional regression</topic><topic>Neuroimaging</topic><topic>neuroimaging phenotype</topic><topic>Neurology</topic><topic>Phenotypes</topic><topic>reduced rank regression</topic><topic>Regression analysis</topic><topic>Schizophrenia</topic><topic>secondary 62G10</topic><topic>single nucleotide polymorphism</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Technology</topic><topic>Variants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NATHOO, Farouk S.</creatorcontrib><creatorcontrib>KONG, Linglong</creatorcontrib><creatorcontrib>ZHU, Hongtu</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Canadian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NATHOO, Farouk S.</au><au>KONG, Linglong</au><au>ZHU, Hongtu</au><aucorp>for the Alzheimer's Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of statistical methods in imaging genetics</atitle><jtitle>Canadian journal of statistics</jtitle><addtitle>Can J Stat</addtitle><date>2019-03</date><risdate>2019</risdate><volume>47</volume><issue>1</issue><spage>108</spage><epage>131</epage><pages>108-131</pages><issn>0319-5724</issn><eissn>1708-945X</eissn><abstract>With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer’s disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD²) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD², various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research. Avec l’évolution rapide de la technologie, de nombreuses études biomédicales collectent des jeux de données massifs comportant un volume d’images multi-modales et des informations cliniques, génétiques et neurocognitives sur des cohortes de plus en plus grandes. Réussir à en extraire puis à intégrer simultanément des informations riches et hétérogènes en génomique ou en imagerie cérébrale pourrait transformer notre compréhension des conséquences de la génétique sur les structures du cerveau et ses fonctions, cognitives ou autres, ainsi que sur les maladies cérébrales affectant les individus au cours de leur vie. Cette compréhension est cruciale pour le diagnostic, la prévention et le traitement de nombreux troubles cérébraux complexes (comme la schizophrénie et la maladie d’Alzheimer). L’analyse conjointe de phénotypes mesurés par l’imagerie en haute dimension avec des données génétiques également en haute dimension mène à un problème de mégadonnées au carré (MD²), présentant des défis computationnels et théoriques. Au-delà de la haute dimension de données MD², les mesures d’imagerie médicale comportent souvent une dépendance spatiale et une apparence lisse, puis les marqueurs génétiques peuvent posséder une structure de dépendance naturelle émergeant du déséquilibre des liens. Les auteurs décrivent le développement récent de plusieurs techniques statistiques pour l’imagerie en génétique, notamment les approches univariée massive et par voxel, la régression de rang réduit, les modèles de mélange, et la régression multi-tâches pour groupes épars. Ils souhaitent ainsi encourager d’autres membres de la communauté statistique à contribuer à cet excitant nouveau champ de recherche.</abstract><cop>Hoboken, USA</cop><pub>Wiley</pub><pmid>31274952</pmid><doi>10.1002/cjs.11487</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0319-5724
ispartof Canadian journal of statistics, 2019-03, Vol.47 (1), p.108-131
issn 0319-5724
1708-945X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6605768
source International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Alzheimer's disease
Brain
Brain structure
Clinical information
Cognitive functioning
Data management
Datasets
Dependence
Diagnostic systems
Genetics
Genomics
Group sparse regression
JEL Code: Primary 62F15
Massifs
Massive data points
Medical diagnosis
Medical imaging
multivariate high‐dimensional regression
Neuroimaging
neuroimaging phenotype
Neurology
Phenotypes
reduced rank regression
Regression analysis
Schizophrenia
secondary 62G10
single nucleotide polymorphism
Smoothness
Statistical analysis
Statistical methods
Technology
Variants
title A review of statistical methods in imaging genetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20statistical%20methods%20in%20imaging%20genetics&rft.jtitle=Canadian%20journal%20of%20statistics&rft.au=NATHOO,%20Farouk%20S.&rft.aucorp=for%20the%20Alzheimer's%20Disease%20Neuroimaging%20Initiative&rft.date=2019-03&rft.volume=47&rft.issue=1&rft.spage=108&rft.epage=131&rft.pages=108-131&rft.issn=0319-5724&rft.eissn=1708-945X&rft_id=info:doi/10.1002/cjs.11487&rft_dat=%3Cjstor_pubme%3E48744692%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4657-e406949eae9fa20279bcac02837556157321d96077dcad294aef6ccafd2249663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2185675713&rft_id=info:pmid/31274952&rft_jstor_id=48744692&rfr_iscdi=true