Loading…

Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala

Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of outp...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2014-12, Vol.34 (49), p.16194-16206
Main Authors: Veres, Judit M, Nagy, Gergő Attila, Vereczki, Viktória Krisztina, Andrási, Tibor, Hájos, Norbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533
cites cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533
container_end_page 16206
container_issue 49
container_start_page 16194
container_title The Journal of neuroscience
container_volume 34
creator Veres, Judit M
Nagy, Gergő Attila
Vereczki, Viktória Krisztina
Andrási, Tibor
Hájos, Norbert
description Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.
doi_str_mv 10.1523/JNEUROSCI.2232-14.2014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1634283825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCK1RessngfycbJDRqS1FFJUrXlmM7M4aMHWwPIi_Q58ZRywhWXVhe3HOOz_UHwDlGa8wJff_5y8X919u7zfWaEEoazNYEYfYCrOq0awhD-CVYISJRI5hkp-B1zt8RQhJh-QqcEs4k5gKvwMNdSbq4rTd6HGc4xeyLj8FZ6MPO977ENMM8Bz1ll2EcoP4dm3qCN9C4cczVUlwo1WtiKCmOcEo-GD_pEQZ3SDHAPPkfPmxrIiw7B3ud41jfTFWh9_PW6lG_ASeDHrN7-3SfgfvLi2-bT83N7dX15uNNYzimpeGWDn2HjRGsZaTljnFHLe2pYW3byY5bybGwWliHZUtboTuLLe9bwfrBcUrPwIfH3OnQ7501tXmtoWrlvU6zitqr_yfB79Q2_lJCoJZ1S8C7p4AUfx5cLmrv8_IROrh4yApLIoUklJLnpYLWHWhLeJWKR6lJMefkhmMjjNTCWx15q4W3wkwtvKvx_N99jra_gOkfsdmsLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634283825</pqid></control><display><type>article</type><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><source>PubMed Central</source><creator>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</creator><creatorcontrib>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</creatorcontrib><description>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2232-14.2014</identifier><identifier>PMID: 25471561</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Axons - physiology ; Basolateral Nuclear Complex - cytology ; Basolateral Nuclear Complex - physiology ; Basolateral Nuclear Complex - ultrastructure ; Female ; GABAergic Neurons - physiology ; Interneurons - physiology ; Male ; Mice ; Neural Inhibition - physiology ; Neurons - physiology ; Presynaptic Terminals - physiology ; Synapses - physiology ; Synapses - ultrastructure</subject><ispartof>The Journal of neuroscience, 2014-12, Vol.34 (49), p.16194-16206</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/3416194-13$15.00/0.</rights><rights>Copyright © 2014 the authors 0270-6474/14/3416194-13$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</citedby><cites>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608493/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25471561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veres, Judit M</creatorcontrib><creatorcontrib>Nagy, Gergő Attila</creatorcontrib><creatorcontrib>Vereczki, Viktória Krisztina</creatorcontrib><creatorcontrib>Andrási, Tibor</creatorcontrib><creatorcontrib>Hájos, Norbert</creatorcontrib><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Basolateral Nuclear Complex - cytology</subject><subject>Basolateral Nuclear Complex - physiology</subject><subject>Basolateral Nuclear Complex - ultrastructure</subject><subject>Female</subject><subject>GABAergic Neurons - physiology</subject><subject>Interneurons - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCK1RessngfycbJDRqS1FFJUrXlmM7M4aMHWwPIi_Q58ZRywhWXVhe3HOOz_UHwDlGa8wJff_5y8X919u7zfWaEEoazNYEYfYCrOq0awhD-CVYISJRI5hkp-B1zt8RQhJh-QqcEs4k5gKvwMNdSbq4rTd6HGc4xeyLj8FZ6MPO977ENMM8Bz1ll2EcoP4dm3qCN9C4cczVUlwo1WtiKCmOcEo-GD_pEQZ3SDHAPPkfPmxrIiw7B3ud41jfTFWh9_PW6lG_ASeDHrN7-3SfgfvLi2-bT83N7dX15uNNYzimpeGWDn2HjRGsZaTljnFHLe2pYW3byY5bybGwWliHZUtboTuLLe9bwfrBcUrPwIfH3OnQ7501tXmtoWrlvU6zitqr_yfB79Q2_lJCoJZ1S8C7p4AUfx5cLmrv8_IROrh4yApLIoUklJLnpYLWHWhLeJWKR6lJMefkhmMjjNTCWx15q4W3wkwtvKvx_N99jra_gOkfsdmsLQ</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Veres, Judit M</creator><creator>Nagy, Gergő Attila</creator><creator>Vereczki, Viktória Krisztina</creator><creator>Andrási, Tibor</creator><creator>Hájos, Norbert</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20141203</creationdate><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><author>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Basolateral Nuclear Complex - cytology</topic><topic>Basolateral Nuclear Complex - physiology</topic><topic>Basolateral Nuclear Complex - ultrastructure</topic><topic>Female</topic><topic>GABAergic Neurons - physiology</topic><topic>Interneurons - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veres, Judit M</creatorcontrib><creatorcontrib>Nagy, Gergő Attila</creatorcontrib><creatorcontrib>Vereczki, Viktória Krisztina</creatorcontrib><creatorcontrib>Andrási, Tibor</creatorcontrib><creatorcontrib>Hájos, Norbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veres, Judit M</au><au>Nagy, Gergő Attila</au><au>Vereczki, Viktória Krisztina</au><au>Andrási, Tibor</au><au>Hájos, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>34</volume><issue>49</issue><spage>16194</spage><epage>16206</epage><pages>16194-16206</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>25471561</pmid><doi>10.1523/JNEUROSCI.2232-14.2014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2014-12, Vol.34 (49), p.16194-16206
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608493
source PubMed Central
subjects Action Potentials - physiology
Animals
Axons - physiology
Basolateral Nuclear Complex - cytology
Basolateral Nuclear Complex - physiology
Basolateral Nuclear Complex - ultrastructure
Female
GABAergic Neurons - physiology
Interneurons - physiology
Male
Mice
Neural Inhibition - physiology
Neurons - physiology
Presynaptic Terminals - physiology
Synapses - physiology
Synapses - ultrastructure
title Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategically%20positioned%20inhibitory%20synapses%20of%20axo-axonic%20cells%20potently%20control%20principal%20neuron%20spiking%20in%20the%20basolateral%20amygdala&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Veres,%20Judit%20M&rft.date=2014-12-03&rft.volume=34&rft.issue=49&rft.spage=16194&rft.epage=16206&rft.pages=16194-16206&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2232-14.2014&rft_dat=%3Cproquest_pubme%3E1634283825%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1634283825&rft_id=info:pmid/25471561&rfr_iscdi=true