Loading…
Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala
Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of outp...
Saved in:
Published in: | The Journal of neuroscience 2014-12, Vol.34 (49), p.16194-16206 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533 |
container_end_page | 16206 |
container_issue | 49 |
container_start_page | 16194 |
container_title | The Journal of neuroscience |
container_volume | 34 |
creator | Veres, Judit M Nagy, Gergő Attila Vereczki, Viktória Krisztina Andrási, Tibor Hájos, Norbert |
description | Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs. |
doi_str_mv | 10.1523/JNEUROSCI.2232-14.2014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1634283825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCK1RessngfycbJDRqS1FFJUrXlmM7M4aMHWwPIi_Q58ZRywhWXVhe3HOOz_UHwDlGa8wJff_5y8X919u7zfWaEEoazNYEYfYCrOq0awhD-CVYISJRI5hkp-B1zt8RQhJh-QqcEs4k5gKvwMNdSbq4rTd6HGc4xeyLj8FZ6MPO977ENMM8Bz1ll2EcoP4dm3qCN9C4cczVUlwo1WtiKCmOcEo-GD_pEQZ3SDHAPPkfPmxrIiw7B3ud41jfTFWh9_PW6lG_ASeDHrN7-3SfgfvLi2-bT83N7dX15uNNYzimpeGWDn2HjRGsZaTljnFHLe2pYW3byY5bybGwWliHZUtboTuLLe9bwfrBcUrPwIfH3OnQ7501tXmtoWrlvU6zitqr_yfB79Q2_lJCoJZ1S8C7p4AUfx5cLmrv8_IROrh4yApLIoUklJLnpYLWHWhLeJWKR6lJMefkhmMjjNTCWx15q4W3wkwtvKvx_N99jra_gOkfsdmsLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634283825</pqid></control><display><type>article</type><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><source>PubMed Central</source><creator>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</creator><creatorcontrib>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</creatorcontrib><description>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2232-14.2014</identifier><identifier>PMID: 25471561</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Axons - physiology ; Basolateral Nuclear Complex - cytology ; Basolateral Nuclear Complex - physiology ; Basolateral Nuclear Complex - ultrastructure ; Female ; GABAergic Neurons - physiology ; Interneurons - physiology ; Male ; Mice ; Neural Inhibition - physiology ; Neurons - physiology ; Presynaptic Terminals - physiology ; Synapses - physiology ; Synapses - ultrastructure</subject><ispartof>The Journal of neuroscience, 2014-12, Vol.34 (49), p.16194-16206</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/3416194-13$15.00/0.</rights><rights>Copyright © 2014 the authors 0270-6474/14/3416194-13$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</citedby><cites>FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608493/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608493/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25471561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veres, Judit M</creatorcontrib><creatorcontrib>Nagy, Gergő Attila</creatorcontrib><creatorcontrib>Vereczki, Viktória Krisztina</creatorcontrib><creatorcontrib>Andrási, Tibor</creatorcontrib><creatorcontrib>Hájos, Norbert</creatorcontrib><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Basolateral Nuclear Complex - cytology</subject><subject>Basolateral Nuclear Complex - physiology</subject><subject>Basolateral Nuclear Complex - ultrastructure</subject><subject>Female</subject><subject>GABAergic Neurons - physiology</subject><subject>Interneurons - physiology</subject><subject>Male</subject><subject>Mice</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCK1RessngfycbJDRqS1FFJUrXlmM7M4aMHWwPIi_Q58ZRywhWXVhe3HOOz_UHwDlGa8wJff_5y8X919u7zfWaEEoazNYEYfYCrOq0awhD-CVYISJRI5hkp-B1zt8RQhJh-QqcEs4k5gKvwMNdSbq4rTd6HGc4xeyLj8FZ6MPO977ENMM8Bz1ll2EcoP4dm3qCN9C4cczVUlwo1WtiKCmOcEo-GD_pEQZ3SDHAPPkfPmxrIiw7B3ud41jfTFWh9_PW6lG_ASeDHrN7-3SfgfvLi2-bT83N7dX15uNNYzimpeGWDn2HjRGsZaTljnFHLe2pYW3byY5bybGwWliHZUtboTuLLe9bwfrBcUrPwIfH3OnQ7501tXmtoWrlvU6zitqr_yfB79Q2_lJCoJZ1S8C7p4AUfx5cLmrv8_IROrh4yApLIoUklJLnpYLWHWhLeJWKR6lJMefkhmMjjNTCWx15q4W3wkwtvKvx_N99jra_gOkfsdmsLQ</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Veres, Judit M</creator><creator>Nagy, Gergő Attila</creator><creator>Vereczki, Viktória Krisztina</creator><creator>Andrási, Tibor</creator><creator>Hájos, Norbert</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20141203</creationdate><title>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</title><author>Veres, Judit M ; Nagy, Gergő Attila ; Vereczki, Viktória Krisztina ; Andrási, Tibor ; Hájos, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Basolateral Nuclear Complex - cytology</topic><topic>Basolateral Nuclear Complex - physiology</topic><topic>Basolateral Nuclear Complex - ultrastructure</topic><topic>Female</topic><topic>GABAergic Neurons - physiology</topic><topic>Interneurons - physiology</topic><topic>Male</topic><topic>Mice</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veres, Judit M</creatorcontrib><creatorcontrib>Nagy, Gergő Attila</creatorcontrib><creatorcontrib>Vereczki, Viktória Krisztina</creatorcontrib><creatorcontrib>Andrási, Tibor</creatorcontrib><creatorcontrib>Hájos, Norbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veres, Judit M</au><au>Nagy, Gergő Attila</au><au>Vereczki, Viktória Krisztina</au><au>Andrási, Tibor</au><au>Hájos, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>34</volume><issue>49</issue><spage>16194</spage><epage>16206</epage><pages>16194-16206</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>25471561</pmid><doi>10.1523/JNEUROSCI.2232-14.2014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2014-12, Vol.34 (49), p.16194-16206 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608493 |
source | PubMed Central |
subjects | Action Potentials - physiology Animals Axons - physiology Basolateral Nuclear Complex - cytology Basolateral Nuclear Complex - physiology Basolateral Nuclear Complex - ultrastructure Female GABAergic Neurons - physiology Interneurons - physiology Male Mice Neural Inhibition - physiology Neurons - physiology Presynaptic Terminals - physiology Synapses - physiology Synapses - ultrastructure |
title | Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategically%20positioned%20inhibitory%20synapses%20of%20axo-axonic%20cells%20potently%20control%20principal%20neuron%20spiking%20in%20the%20basolateral%20amygdala&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Veres,%20Judit%20M&rft.date=2014-12-03&rft.volume=34&rft.issue=49&rft.spage=16194&rft.epage=16206&rft.pages=16194-16206&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2232-14.2014&rft_dat=%3Cproquest_pubme%3E1634283825%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-5d3fb91cc6484285e45e3d3b3c4889795d7516da6de178386a9d1d5b864bfe533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1634283825&rft_id=info:pmid/25471561&rfr_iscdi=true |