Loading…

Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues

Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of my...

Full description

Saved in:
Bibliographic Details
Published in:Chembiochem : a European journal of chemical biology 2019-05, Vol.20 (10), p.1282-1291
Main Authors: Fiolek, Taylor J., Banahene, Nicholas, Kavunja, Herbert W., Holmes, Nathan J., Rylski, Adrian K., Pohane, Amol Arunrao, Siegrist, M. Sloan, Swarts, Benjamin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3
cites cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3
container_end_page 1291
container_issue 10
container_start_page 1282
container_title Chembiochem : a European journal of chemical biology
container_volume 20
creator Fiolek, Taylor J.
Banahene, Nicholas
Kavunja, Herbert W.
Holmes, Nathan J.
Rylski, Adrian K.
Pohane, Amol Arunrao
Siegrist, M. Sloan
Swarts, Benjamin M.
description Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies. Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.
doi_str_mv 10.1002/cbic.201800687
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6614877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225148241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRD_gyhFZ4sIlwWPvetcXpBKlUClVD5SzZXtnE0e7drA3Lfn3OEoILRdOtsbPPJrxWxTvgE6BUvbJGmenjEJDqWjqF8U5lFxOasH5y-O9ZKw-Ky5SWlNKpeDwujjjtGokSDgv1nO_dB4xOr8k4wrJ7c6GAQcTtUcSOrJwD4ei0XbMmCaPblwR7cn810b7FlvyHcc9eR9xpfuQMh58GHJLr0ckVz4Xl1tMb4pXne4Tvj2el8WP6_n97Ntkcff1Zna1mNiKVvUEpO20AWNRlkZrBMmbrqmqpqu5BcnalkKlhWGcorGUlzWT0nKDLWArLPLL4vPBu9maAVuLfoy6V5voBh13Kminnr94t1LL8KCEgLKp6yz4eBTE8DMPPqrBJYt9n78kbJNiIIAK3pQ8ox_-QddhG_PGmWKsyj5WQqamB8rGkFLE7jQMULWPUe1jVKcYc8P7pyuc8D-5ZUAegEfX4-4_OjX7cjP7K_8NV_Wrpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225148241</pqid></control><display><type>article</type><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><source>Wiley</source><creator>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</creator><creatorcontrib>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</creatorcontrib><description>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies. Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</description><identifier>ISSN: 1439-4227</identifier><identifier>ISSN: 1439-7633</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201800687</identifier><identifier>PMID: 30589191</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acyltransferases - metabolism ; Alkynes ; Alkynes - chemical synthesis ; Alkynes - chemistry ; Alkynes - metabolism ; Antigens ; Azides - chemical synthesis ; Azides - chemistry ; Azides - metabolism ; Bacillus subtilis - chemistry ; bioorthogonal chemistry ; Biosynthesis ; Carbohydrates ; Cell Engineering - methods ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell surface ; chemical reporters ; Chemical synthesis ; Click Chemistry ; Cord Factors - chemical synthesis ; Cord Factors - chemistry ; Cord Factors - metabolism ; Corynebacterium - chemistry ; Dependence ; Drug development ; Engineering ; Escherichia coli - chemistry ; Fluorescence ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; imaging ; Immunological tolerance ; Labeling ; Metabolism ; Molecular Structure ; mycobacteria ; Mycobacterium smegmatis - chemistry ; Mycobacterium tuberculosis - chemistry ; Mycolic acids ; Organic chemistry ; Permeability ; Substrates ; Trehalose ; Tuberculosis</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-05, Vol.20 (10), p.1282-1291</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</citedby><cites>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</cites><orcidid>0000-0003-2574-0366 ; 0000-0001-8402-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30589191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiolek, Taylor J.</creatorcontrib><creatorcontrib>Banahene, Nicholas</creatorcontrib><creatorcontrib>Kavunja, Herbert W.</creatorcontrib><creatorcontrib>Holmes, Nathan J.</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Pohane, Amol Arunrao</creatorcontrib><creatorcontrib>Siegrist, M. Sloan</creatorcontrib><creatorcontrib>Swarts, Benjamin M.</creatorcontrib><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies. Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</description><subject>Acyltransferases - metabolism</subject><subject>Alkynes</subject><subject>Alkynes - chemical synthesis</subject><subject>Alkynes - chemistry</subject><subject>Alkynes - metabolism</subject><subject>Antigens</subject><subject>Azides - chemical synthesis</subject><subject>Azides - chemistry</subject><subject>Azides - metabolism</subject><subject>Bacillus subtilis - chemistry</subject><subject>bioorthogonal chemistry</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cell Engineering - methods</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell surface</subject><subject>chemical reporters</subject><subject>Chemical synthesis</subject><subject>Click Chemistry</subject><subject>Cord Factors - chemical synthesis</subject><subject>Cord Factors - chemistry</subject><subject>Cord Factors - metabolism</subject><subject>Corynebacterium - chemistry</subject><subject>Dependence</subject><subject>Drug development</subject><subject>Engineering</subject><subject>Escherichia coli - chemistry</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>imaging</subject><subject>Immunological tolerance</subject><subject>Labeling</subject><subject>Metabolism</subject><subject>Molecular Structure</subject><subject>mycobacteria</subject><subject>Mycobacterium smegmatis - chemistry</subject><subject>Mycobacterium tuberculosis - chemistry</subject><subject>Mycolic acids</subject><subject>Organic chemistry</subject><subject>Permeability</subject><subject>Substrates</subject><subject>Trehalose</subject><subject>Tuberculosis</subject><issn>1439-4227</issn><issn>1439-7633</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhlcIRD_gyhFZ4sIlwWPvetcXpBKlUClVD5SzZXtnE0e7drA3Lfn3OEoILRdOtsbPPJrxWxTvgE6BUvbJGmenjEJDqWjqF8U5lFxOasH5y-O9ZKw-Ky5SWlNKpeDwujjjtGokSDgv1nO_dB4xOr8k4wrJ7c6GAQcTtUcSOrJwD4ei0XbMmCaPblwR7cn810b7FlvyHcc9eR9xpfuQMh58GHJLr0ckVz4Xl1tMb4pXne4Tvj2el8WP6_n97Ntkcff1Zna1mNiKVvUEpO20AWNRlkZrBMmbrqmqpqu5BcnalkKlhWGcorGUlzWT0nKDLWArLPLL4vPBu9maAVuLfoy6V5voBh13Kminnr94t1LL8KCEgLKp6yz4eBTE8DMPPqrBJYt9n78kbJNiIIAK3pQ8ox_-QddhG_PGmWKsyj5WQqamB8rGkFLE7jQMULWPUe1jVKcYc8P7pyuc8D-5ZUAegEfX4-4_OjX7cjP7K_8NV_Wrpw</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Fiolek, Taylor J.</creator><creator>Banahene, Nicholas</creator><creator>Kavunja, Herbert W.</creator><creator>Holmes, Nathan J.</creator><creator>Rylski, Adrian K.</creator><creator>Pohane, Amol Arunrao</creator><creator>Siegrist, M. Sloan</creator><creator>Swarts, Benjamin M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2574-0366</orcidid><orcidid>https://orcid.org/0000-0001-8402-359X</orcidid></search><sort><creationdate>20190515</creationdate><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><author>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acyltransferases - metabolism</topic><topic>Alkynes</topic><topic>Alkynes - chemical synthesis</topic><topic>Alkynes - chemistry</topic><topic>Alkynes - metabolism</topic><topic>Antigens</topic><topic>Azides - chemical synthesis</topic><topic>Azides - chemistry</topic><topic>Azides - metabolism</topic><topic>Bacillus subtilis - chemistry</topic><topic>bioorthogonal chemistry</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cell Engineering - methods</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell surface</topic><topic>chemical reporters</topic><topic>Chemical synthesis</topic><topic>Click Chemistry</topic><topic>Cord Factors - chemical synthesis</topic><topic>Cord Factors - chemistry</topic><topic>Cord Factors - metabolism</topic><topic>Corynebacterium - chemistry</topic><topic>Dependence</topic><topic>Drug development</topic><topic>Engineering</topic><topic>Escherichia coli - chemistry</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>imaging</topic><topic>Immunological tolerance</topic><topic>Labeling</topic><topic>Metabolism</topic><topic>Molecular Structure</topic><topic>mycobacteria</topic><topic>Mycobacterium smegmatis - chemistry</topic><topic>Mycobacterium tuberculosis - chemistry</topic><topic>Mycolic acids</topic><topic>Organic chemistry</topic><topic>Permeability</topic><topic>Substrates</topic><topic>Trehalose</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiolek, Taylor J.</creatorcontrib><creatorcontrib>Banahene, Nicholas</creatorcontrib><creatorcontrib>Kavunja, Herbert W.</creatorcontrib><creatorcontrib>Holmes, Nathan J.</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Pohane, Amol Arunrao</creatorcontrib><creatorcontrib>Siegrist, M. Sloan</creatorcontrib><creatorcontrib>Swarts, Benjamin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiolek, Taylor J.</au><au>Banahene, Nicholas</au><au>Kavunja, Herbert W.</au><au>Holmes, Nathan J.</au><au>Rylski, Adrian K.</au><au>Pohane, Amol Arunrao</au><au>Siegrist, M. Sloan</au><au>Swarts, Benjamin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>1282</spage><epage>1291</epage><pages>1282-1291</pages><issn>1439-4227</issn><issn>1439-7633</issn><eissn>1439-7633</eissn><abstract>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies. Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30589191</pmid><doi>10.1002/cbic.201800687</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2574-0366</orcidid><orcidid>https://orcid.org/0000-0001-8402-359X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2019-05, Vol.20 (10), p.1282-1291
issn 1439-4227
1439-7633
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6614877
source Wiley
subjects Acyltransferases - metabolism
Alkynes
Alkynes - chemical synthesis
Alkynes - chemistry
Alkynes - metabolism
Antigens
Azides - chemical synthesis
Azides - chemistry
Azides - metabolism
Bacillus subtilis - chemistry
bioorthogonal chemistry
Biosynthesis
Carbohydrates
Cell Engineering - methods
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell surface
chemical reporters
Chemical synthesis
Click Chemistry
Cord Factors - chemical synthesis
Cord Factors - chemistry
Cord Factors - metabolism
Corynebacterium - chemistry
Dependence
Drug development
Engineering
Escherichia coli - chemistry
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
imaging
Immunological tolerance
Labeling
Metabolism
Molecular Structure
mycobacteria
Mycobacterium smegmatis - chemistry
Mycobacterium tuberculosis - chemistry
Mycolic acids
Organic chemistry
Permeability
Substrates
Trehalose
Tuberculosis
title Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Mycomembrane%20of%20Live%20Mycobacteria%20with%20an%20Expanded%20Set%20of%20Trehalose%20Monomycolate%20Analogues&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Fiolek,%20Taylor%20J.&rft.date=2019-05-15&rft.volume=20&rft.issue=10&rft.spage=1282&rft.epage=1291&rft.pages=1282-1291&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201800687&rft_dat=%3Cproquest_pubme%3E2225148241%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225148241&rft_id=info:pmid/30589191&rfr_iscdi=true