Loading…
Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues
Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of my...
Saved in:
Published in: | Chembiochem : a European journal of chemical biology 2019-05, Vol.20 (10), p.1282-1291 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3 |
container_end_page | 1291 |
container_issue | 10 |
container_start_page | 1282 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 20 |
creator | Fiolek, Taylor J. Banahene, Nicholas Kavunja, Herbert W. Holmes, Nathan J. Rylski, Adrian K. Pohane, Amol Arunrao Siegrist, M. Sloan Swarts, Benjamin M. |
description | Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation. |
doi_str_mv | 10.1002/cbic.201800687 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6614877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225148241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRD_gyhFZ4sIlwWPvetcXpBKlUClVD5SzZXtnE0e7drA3Lfn3OEoILRdOtsbPPJrxWxTvgE6BUvbJGmenjEJDqWjqF8U5lFxOasH5y-O9ZKw-Ky5SWlNKpeDwujjjtGokSDgv1nO_dB4xOr8k4wrJ7c6GAQcTtUcSOrJwD4ei0XbMmCaPblwR7cn810b7FlvyHcc9eR9xpfuQMh58GHJLr0ckVz4Xl1tMb4pXne4Tvj2el8WP6_n97Ntkcff1Zna1mNiKVvUEpO20AWNRlkZrBMmbrqmqpqu5BcnalkKlhWGcorGUlzWT0nKDLWArLPLL4vPBu9maAVuLfoy6V5voBh13Kminnr94t1LL8KCEgLKp6yz4eBTE8DMPPqrBJYt9n78kbJNiIIAK3pQ8ox_-QddhG_PGmWKsyj5WQqamB8rGkFLE7jQMULWPUe1jVKcYc8P7pyuc8D-5ZUAegEfX4-4_OjX7cjP7K_8NV_Wrpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225148241</pqid></control><display><type>article</type><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><source>Wiley</source><creator>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</creator><creatorcontrib>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</creatorcontrib><description>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</description><identifier>ISSN: 1439-4227</identifier><identifier>ISSN: 1439-7633</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201800687</identifier><identifier>PMID: 30589191</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acyltransferases - metabolism ; Alkynes ; Alkynes - chemical synthesis ; Alkynes - chemistry ; Alkynes - metabolism ; Antigens ; Azides - chemical synthesis ; Azides - chemistry ; Azides - metabolism ; Bacillus subtilis - chemistry ; bioorthogonal chemistry ; Biosynthesis ; Carbohydrates ; Cell Engineering - methods ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell surface ; chemical reporters ; Chemical synthesis ; Click Chemistry ; Cord Factors - chemical synthesis ; Cord Factors - chemistry ; Cord Factors - metabolism ; Corynebacterium - chemistry ; Dependence ; Drug development ; Engineering ; Escherichia coli - chemistry ; Fluorescence ; Fluorescent Dyes - chemical synthesis ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; imaging ; Immunological tolerance ; Labeling ; Metabolism ; Molecular Structure ; mycobacteria ; Mycobacterium smegmatis - chemistry ; Mycobacterium tuberculosis - chemistry ; Mycolic acids ; Organic chemistry ; Permeability ; Substrates ; Trehalose ; Tuberculosis</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-05, Vol.20 (10), p.1282-1291</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</citedby><cites>FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</cites><orcidid>0000-0003-2574-0366 ; 0000-0001-8402-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30589191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiolek, Taylor J.</creatorcontrib><creatorcontrib>Banahene, Nicholas</creatorcontrib><creatorcontrib>Kavunja, Herbert W.</creatorcontrib><creatorcontrib>Holmes, Nathan J.</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Pohane, Amol Arunrao</creatorcontrib><creatorcontrib>Siegrist, M. Sloan</creatorcontrib><creatorcontrib>Swarts, Benjamin M.</creatorcontrib><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</description><subject>Acyltransferases - metabolism</subject><subject>Alkynes</subject><subject>Alkynes - chemical synthesis</subject><subject>Alkynes - chemistry</subject><subject>Alkynes - metabolism</subject><subject>Antigens</subject><subject>Azides - chemical synthesis</subject><subject>Azides - chemistry</subject><subject>Azides - metabolism</subject><subject>Bacillus subtilis - chemistry</subject><subject>bioorthogonal chemistry</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cell Engineering - methods</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell surface</subject><subject>chemical reporters</subject><subject>Chemical synthesis</subject><subject>Click Chemistry</subject><subject>Cord Factors - chemical synthesis</subject><subject>Cord Factors - chemistry</subject><subject>Cord Factors - metabolism</subject><subject>Corynebacterium - chemistry</subject><subject>Dependence</subject><subject>Drug development</subject><subject>Engineering</subject><subject>Escherichia coli - chemistry</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemical synthesis</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>imaging</subject><subject>Immunological tolerance</subject><subject>Labeling</subject><subject>Metabolism</subject><subject>Molecular Structure</subject><subject>mycobacteria</subject><subject>Mycobacterium smegmatis - chemistry</subject><subject>Mycobacterium tuberculosis - chemistry</subject><subject>Mycolic acids</subject><subject>Organic chemistry</subject><subject>Permeability</subject><subject>Substrates</subject><subject>Trehalose</subject><subject>Tuberculosis</subject><issn>1439-4227</issn><issn>1439-7633</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhlcIRD_gyhFZ4sIlwWPvetcXpBKlUClVD5SzZXtnE0e7drA3Lfn3OEoILRdOtsbPPJrxWxTvgE6BUvbJGmenjEJDqWjqF8U5lFxOasH5y-O9ZKw-Ky5SWlNKpeDwujjjtGokSDgv1nO_dB4xOr8k4wrJ7c6GAQcTtUcSOrJwD4ei0XbMmCaPblwR7cn810b7FlvyHcc9eR9xpfuQMh58GHJLr0ckVz4Xl1tMb4pXne4Tvj2el8WP6_n97Ntkcff1Zna1mNiKVvUEpO20AWNRlkZrBMmbrqmqpqu5BcnalkKlhWGcorGUlzWT0nKDLWArLPLL4vPBu9maAVuLfoy6V5voBh13Kminnr94t1LL8KCEgLKp6yz4eBTE8DMPPqrBJYt9n78kbJNiIIAK3pQ8ox_-QddhG_PGmWKsyj5WQqamB8rGkFLE7jQMULWPUe1jVKcYc8P7pyuc8D-5ZUAegEfX4-4_OjX7cjP7K_8NV_Wrpw</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Fiolek, Taylor J.</creator><creator>Banahene, Nicholas</creator><creator>Kavunja, Herbert W.</creator><creator>Holmes, Nathan J.</creator><creator>Rylski, Adrian K.</creator><creator>Pohane, Amol Arunrao</creator><creator>Siegrist, M. Sloan</creator><creator>Swarts, Benjamin M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2574-0366</orcidid><orcidid>https://orcid.org/0000-0001-8402-359X</orcidid></search><sort><creationdate>20190515</creationdate><title>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</title><author>Fiolek, Taylor J. ; Banahene, Nicholas ; Kavunja, Herbert W. ; Holmes, Nathan J. ; Rylski, Adrian K. ; Pohane, Amol Arunrao ; Siegrist, M. Sloan ; Swarts, Benjamin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acyltransferases - metabolism</topic><topic>Alkynes</topic><topic>Alkynes - chemical synthesis</topic><topic>Alkynes - chemistry</topic><topic>Alkynes - metabolism</topic><topic>Antigens</topic><topic>Azides - chemical synthesis</topic><topic>Azides - chemistry</topic><topic>Azides - metabolism</topic><topic>Bacillus subtilis - chemistry</topic><topic>bioorthogonal chemistry</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cell Engineering - methods</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell surface</topic><topic>chemical reporters</topic><topic>Chemical synthesis</topic><topic>Click Chemistry</topic><topic>Cord Factors - chemical synthesis</topic><topic>Cord Factors - chemistry</topic><topic>Cord Factors - metabolism</topic><topic>Corynebacterium - chemistry</topic><topic>Dependence</topic><topic>Drug development</topic><topic>Engineering</topic><topic>Escherichia coli - chemistry</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemical synthesis</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>imaging</topic><topic>Immunological tolerance</topic><topic>Labeling</topic><topic>Metabolism</topic><topic>Molecular Structure</topic><topic>mycobacteria</topic><topic>Mycobacterium smegmatis - chemistry</topic><topic>Mycobacterium tuberculosis - chemistry</topic><topic>Mycolic acids</topic><topic>Organic chemistry</topic><topic>Permeability</topic><topic>Substrates</topic><topic>Trehalose</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiolek, Taylor J.</creatorcontrib><creatorcontrib>Banahene, Nicholas</creatorcontrib><creatorcontrib>Kavunja, Herbert W.</creatorcontrib><creatorcontrib>Holmes, Nathan J.</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Pohane, Amol Arunrao</creatorcontrib><creatorcontrib>Siegrist, M. Sloan</creatorcontrib><creatorcontrib>Swarts, Benjamin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiolek, Taylor J.</au><au>Banahene, Nicholas</au><au>Kavunja, Herbert W.</au><au>Holmes, Nathan J.</au><au>Rylski, Adrian K.</au><au>Pohane, Amol Arunrao</au><au>Siegrist, M. Sloan</au><au>Swarts, Benjamin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>1282</spage><epage>1291</epage><pages>1282-1291</pages><issn>1439-4227</issn><issn>1439-7633</issn><eissn>1439-7633</eissn><abstract>Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)‐catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne‐modified TMM analogue (O‐AlkTMM‐C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane. Here, we describe the synthesis and evaluation of a toolbox of TMM‐based reporters bearing alkyne, azide, trans‐cyclooctene, and fluorescent tags. These compounds gave further insight into the substrate tolerance of mycoloyltransferases (e.g., Ag85s) in a cellular context and they provide significantly expanded experimental versatility by allowing one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling via tetrazine ligation. Such capabilities will facilitate research on mycomembrane composition, biosynthesis, and dynamics. Moreover, because TMM is exclusively metabolized by Corynebacterineae, the described probes may be valuable for the specific detection and cell‐surface engineering of Mycobacterium tuberculosis and related pathogens. We also performed experiments to establish the dependence of probe incorporation on mycoloyltransferase activity, results from which suggested that cellular labeling is a function not only of metabolic incorporation (and likely removal) pathway(s), but also accessibility across the envelope. Thus, whole‐cell labeling experiments with TMM reporters should be carefully designed and interpreted when envelope permeability may be compromised. On the other hand, this property of TMM reporters can potentially be exploited as a convenient way to probe changes in envelope integrity and permeability, facilitating drug development studies.
Modifying mycobacteria by mycoloylation: A suite of trehalose monomycolate (TMM)‐based metabolic reporters provides versatility and specificity for analyzing and engineering the outer membrane of living mycobacteria. These compounds gave insight into the substrate tolerance of mycoloyltransferases and allow one‐ or two‐step cell labeling, live cell labeling, and rapid cell labeling through tetrazine ligation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30589191</pmid><doi>10.1002/cbic.201800687</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2574-0366</orcidid><orcidid>https://orcid.org/0000-0001-8402-359X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2019-05, Vol.20 (10), p.1282-1291 |
issn | 1439-4227 1439-7633 1439-7633 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6614877 |
source | Wiley |
subjects | Acyltransferases - metabolism Alkynes Alkynes - chemical synthesis Alkynes - chemistry Alkynes - metabolism Antigens Azides - chemical synthesis Azides - chemistry Azides - metabolism Bacillus subtilis - chemistry bioorthogonal chemistry Biosynthesis Carbohydrates Cell Engineering - methods Cell Membrane - chemistry Cell Membrane - metabolism Cell surface chemical reporters Chemical synthesis Click Chemistry Cord Factors - chemical synthesis Cord Factors - chemistry Cord Factors - metabolism Corynebacterium - chemistry Dependence Drug development Engineering Escherichia coli - chemistry Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism imaging Immunological tolerance Labeling Metabolism Molecular Structure mycobacteria Mycobacterium smegmatis - chemistry Mycobacterium tuberculosis - chemistry Mycolic acids Organic chemistry Permeability Substrates Trehalose Tuberculosis |
title | Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Mycomembrane%20of%20Live%20Mycobacteria%20with%20an%20Expanded%20Set%20of%20Trehalose%20Monomycolate%20Analogues&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Fiolek,%20Taylor%20J.&rft.date=2019-05-15&rft.volume=20&rft.issue=10&rft.spage=1282&rft.epage=1291&rft.pages=1282-1291&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201800687&rft_dat=%3Cproquest_pubme%3E2225148241%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5057-19cfab1bce94baae1938f8558f73c192dd015a6b230ebc0347299c3bed1ed6ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2225148241&rft_id=info:pmid/30589191&rfr_iscdi=true |