Loading…

Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images

Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a fea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical medicine 2019-06, Vol.8 (6), p.891
Main Authors: Fanizzi, Annarita, Losurdo, Liliana, Basile, Teresa Maria A, Bellotti, Roberto, Bottigli, Ubaldo, Delogu, Pasquale, Diacono, Domenico, Didonna, Vittorio, Fausto, Alfonso, Lombardi, Angela, Lorusso, Vito, Massafra, Raffaella, Tangaro, Sabina, La Forgia, Daniele
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373
cites cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373
container_end_page
container_issue 6
container_start_page 891
container_title Journal of clinical medicine
container_volume 8
creator Fanizzi, Annarita
Losurdo, Liliana
Basile, Teresa Maria A
Bellotti, Roberto
Bottigli, Ubaldo
Delogu, Pasquale
Diacono, Domenico
Didonna, Vittorio
Fausto, Alfonso
Lombardi, Angela
Lorusso, Vito
Massafra, Raffaella
Tangaro, Sabina
La Forgia, Daniele
description Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.
doi_str_mv 10.3390/jcm8060891
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246906640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</originalsourceid><addsrcrecordid>eNpVUdFKwzAUDaI4mXvxAySPIlSTpk3TF2HWTQcTH6bPIUuTrqNpatIK-3s7N-e8L_dyzuHcAweAK4zuCEnR_VoahihiKT4BFyFKkgARRk6P7gEYeb9G_TAWhTg5BwOCQxIRSi5APe2qagPHXWuNaFUOF13TWNfCxca3ykBtHXwqRVFbX3poNXx0SvgWZqKWysGyhpmtW9dDwaRebcHeolGyhyr4KoyxhRPNagNnRhTKX4IzLSqvRvs9BB_TyXv2EszfnmfZeB5IkrA2SHKSR1RIKZch1pJIidUyDmOUaKyZYDpSS8mwJmlPxlT1RCwk0XEqwwSRhAzBw8636ZZG5VJtM1a8caURbsOtKPl_pi5XvLBfnFJM0x-Dm72Bs5-d8i03pZeqqkStbOd5GEY0RZRGqJfe7qTSWe-d0oc3GPFtR_yvo158fRzsIP1thHwDjiePQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246906640</pqid></control><display><type>article</type><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</creator><creatorcontrib>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</creatorcontrib><description>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm8060891</identifier><identifier>PMID: 31234363</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Journal of clinical medicine, 2019-06, Vol.8 (6), p.891</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</citedby><cites>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</cites><orcidid>0000-0002-2729-9896 ; 0000-0002-1372-3916 ; 0000-0003-2026-2000 ; 0000-0002-4964-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31234363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Losurdo, Liliana</creatorcontrib><creatorcontrib>Basile, Teresa Maria A</creatorcontrib><creatorcontrib>Bellotti, Roberto</creatorcontrib><creatorcontrib>Bottigli, Ubaldo</creatorcontrib><creatorcontrib>Delogu, Pasquale</creatorcontrib><creatorcontrib>Diacono, Domenico</creatorcontrib><creatorcontrib>Didonna, Vittorio</creatorcontrib><creatorcontrib>Fausto, Alfonso</creatorcontrib><creatorcontrib>Lombardi, Angela</creatorcontrib><creatorcontrib>Lorusso, Vito</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Tangaro, Sabina</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</description><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUdFKwzAUDaI4mXvxAySPIlSTpk3TF2HWTQcTH6bPIUuTrqNpatIK-3s7N-e8L_dyzuHcAweAK4zuCEnR_VoahihiKT4BFyFKkgARRk6P7gEYeb9G_TAWhTg5BwOCQxIRSi5APe2qagPHXWuNaFUOF13TWNfCxca3ykBtHXwqRVFbX3poNXx0SvgWZqKWysGyhpmtW9dDwaRebcHeolGyhyr4KoyxhRPNagNnRhTKX4IzLSqvRvs9BB_TyXv2EszfnmfZeB5IkrA2SHKSR1RIKZch1pJIidUyDmOUaKyZYDpSS8mwJmlPxlT1RCwk0XEqwwSRhAzBw8636ZZG5VJtM1a8caURbsOtKPl_pi5XvLBfnFJM0x-Dm72Bs5-d8i03pZeqqkStbOd5GEY0RZRGqJfe7qTSWe-d0oc3GPFtR_yvo158fRzsIP1thHwDjiePQw</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Fanizzi, Annarita</creator><creator>Losurdo, Liliana</creator><creator>Basile, Teresa Maria A</creator><creator>Bellotti, Roberto</creator><creator>Bottigli, Ubaldo</creator><creator>Delogu, Pasquale</creator><creator>Diacono, Domenico</creator><creator>Didonna, Vittorio</creator><creator>Fausto, Alfonso</creator><creator>Lombardi, Angela</creator><creator>Lorusso, Vito</creator><creator>Massafra, Raffaella</creator><creator>Tangaro, Sabina</creator><creator>La Forgia, Daniele</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2729-9896</orcidid><orcidid>https://orcid.org/0000-0002-1372-3916</orcidid><orcidid>https://orcid.org/0000-0003-2026-2000</orcidid><orcidid>https://orcid.org/0000-0002-4964-7951</orcidid></search><sort><creationdate>20190621</creationdate><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><author>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Losurdo, Liliana</creatorcontrib><creatorcontrib>Basile, Teresa Maria A</creatorcontrib><creatorcontrib>Bellotti, Roberto</creatorcontrib><creatorcontrib>Bottigli, Ubaldo</creatorcontrib><creatorcontrib>Delogu, Pasquale</creatorcontrib><creatorcontrib>Diacono, Domenico</creatorcontrib><creatorcontrib>Didonna, Vittorio</creatorcontrib><creatorcontrib>Fausto, Alfonso</creatorcontrib><creatorcontrib>Lombardi, Angela</creatorcontrib><creatorcontrib>Lorusso, Vito</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Tangaro, Sabina</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fanizzi, Annarita</au><au>Losurdo, Liliana</au><au>Basile, Teresa Maria A</au><au>Bellotti, Roberto</au><au>Bottigli, Ubaldo</au><au>Delogu, Pasquale</au><au>Diacono, Domenico</au><au>Didonna, Vittorio</au><au>Fausto, Alfonso</au><au>Lombardi, Angela</au><au>Lorusso, Vito</au><au>Massafra, Raffaella</au><au>Tangaro, Sabina</au><au>La Forgia, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>8</volume><issue>6</issue><spage>891</spage><pages>891-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>31234363</pmid><doi>10.3390/jcm8060891</doi><orcidid>https://orcid.org/0000-0002-2729-9896</orcidid><orcidid>https://orcid.org/0000-0002-1372-3916</orcidid><orcidid>https://orcid.org/0000-0003-2026-2000</orcidid><orcidid>https://orcid.org/0000-0002-4964-7951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2019-06, Vol.8 (6), p.891
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616937
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
title Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Support%20System%20for%20Diagnosis%20of%20Breast%20Cancer%20in%20Contrast-Enhanced%20Spectral%20Mammography%20Images&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Fanizzi,%20Annarita&rft.date=2019-06-21&rft.volume=8&rft.issue=6&rft.spage=891&rft.pages=891-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm8060891&rft_dat=%3Cproquest_pubme%3E2246906640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2246906640&rft_id=info:pmid/31234363&rfr_iscdi=true