Loading…
Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images
Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a fea...
Saved in:
Published in: | Journal of clinical medicine 2019-06, Vol.8 (6), p.891 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373 |
container_end_page | |
container_issue | 6 |
container_start_page | 891 |
container_title | Journal of clinical medicine |
container_volume | 8 |
creator | Fanizzi, Annarita Losurdo, Liliana Basile, Teresa Maria A Bellotti, Roberto Bottigli, Ubaldo Delogu, Pasquale Diacono, Domenico Didonna, Vittorio Fausto, Alfonso Lombardi, Angela Lorusso, Vito Massafra, Raffaella Tangaro, Sabina La Forgia, Daniele |
description | Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries. |
doi_str_mv | 10.3390/jcm8060891 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246906640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</originalsourceid><addsrcrecordid>eNpVUdFKwzAUDaI4mXvxAySPIlSTpk3TF2HWTQcTH6bPIUuTrqNpatIK-3s7N-e8L_dyzuHcAweAK4zuCEnR_VoahihiKT4BFyFKkgARRk6P7gEYeb9G_TAWhTg5BwOCQxIRSi5APe2qagPHXWuNaFUOF13TWNfCxca3ykBtHXwqRVFbX3poNXx0SvgWZqKWysGyhpmtW9dDwaRebcHeolGyhyr4KoyxhRPNagNnRhTKX4IzLSqvRvs9BB_TyXv2EszfnmfZeB5IkrA2SHKSR1RIKZch1pJIidUyDmOUaKyZYDpSS8mwJmlPxlT1RCwk0XEqwwSRhAzBw8636ZZG5VJtM1a8caURbsOtKPl_pi5XvLBfnFJM0x-Dm72Bs5-d8i03pZeqqkStbOd5GEY0RZRGqJfe7qTSWe-d0oc3GPFtR_yvo158fRzsIP1thHwDjiePQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246906640</pqid></control><display><type>article</type><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</creator><creatorcontrib>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</creatorcontrib><description>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm8060891</identifier><identifier>PMID: 31234363</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Journal of clinical medicine, 2019-06, Vol.8 (6), p.891</ispartof><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</citedby><cites>FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</cites><orcidid>0000-0002-2729-9896 ; 0000-0002-1372-3916 ; 0000-0003-2026-2000 ; 0000-0002-4964-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31234363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Losurdo, Liliana</creatorcontrib><creatorcontrib>Basile, Teresa Maria A</creatorcontrib><creatorcontrib>Bellotti, Roberto</creatorcontrib><creatorcontrib>Bottigli, Ubaldo</creatorcontrib><creatorcontrib>Delogu, Pasquale</creatorcontrib><creatorcontrib>Diacono, Domenico</creatorcontrib><creatorcontrib>Didonna, Vittorio</creatorcontrib><creatorcontrib>Fausto, Alfonso</creatorcontrib><creatorcontrib>Lombardi, Angela</creatorcontrib><creatorcontrib>Lorusso, Vito</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Tangaro, Sabina</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</description><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUdFKwzAUDaI4mXvxAySPIlSTpk3TF2HWTQcTH6bPIUuTrqNpatIK-3s7N-e8L_dyzuHcAweAK4zuCEnR_VoahihiKT4BFyFKkgARRk6P7gEYeb9G_TAWhTg5BwOCQxIRSi5APe2qagPHXWuNaFUOF13TWNfCxca3ykBtHXwqRVFbX3poNXx0SvgWZqKWysGyhpmtW9dDwaRebcHeolGyhyr4KoyxhRPNagNnRhTKX4IzLSqvRvs9BB_TyXv2EszfnmfZeB5IkrA2SHKSR1RIKZch1pJIidUyDmOUaKyZYDpSS8mwJmlPxlT1RCwk0XEqwwSRhAzBw8636ZZG5VJtM1a8caURbsOtKPl_pi5XvLBfnFJM0x-Dm72Bs5-d8i03pZeqqkStbOd5GEY0RZRGqJfe7qTSWe-d0oc3GPFtR_yvo158fRzsIP1thHwDjiePQw</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Fanizzi, Annarita</creator><creator>Losurdo, Liliana</creator><creator>Basile, Teresa Maria A</creator><creator>Bellotti, Roberto</creator><creator>Bottigli, Ubaldo</creator><creator>Delogu, Pasquale</creator><creator>Diacono, Domenico</creator><creator>Didonna, Vittorio</creator><creator>Fausto, Alfonso</creator><creator>Lombardi, Angela</creator><creator>Lorusso, Vito</creator><creator>Massafra, Raffaella</creator><creator>Tangaro, Sabina</creator><creator>La Forgia, Daniele</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2729-9896</orcidid><orcidid>https://orcid.org/0000-0002-1372-3916</orcidid><orcidid>https://orcid.org/0000-0003-2026-2000</orcidid><orcidid>https://orcid.org/0000-0002-4964-7951</orcidid></search><sort><creationdate>20190621</creationdate><title>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</title><author>Fanizzi, Annarita ; Losurdo, Liliana ; Basile, Teresa Maria A ; Bellotti, Roberto ; Bottigli, Ubaldo ; Delogu, Pasquale ; Diacono, Domenico ; Didonna, Vittorio ; Fausto, Alfonso ; Lombardi, Angela ; Lorusso, Vito ; Massafra, Raffaella ; Tangaro, Sabina ; La Forgia, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fanizzi, Annarita</creatorcontrib><creatorcontrib>Losurdo, Liliana</creatorcontrib><creatorcontrib>Basile, Teresa Maria A</creatorcontrib><creatorcontrib>Bellotti, Roberto</creatorcontrib><creatorcontrib>Bottigli, Ubaldo</creatorcontrib><creatorcontrib>Delogu, Pasquale</creatorcontrib><creatorcontrib>Diacono, Domenico</creatorcontrib><creatorcontrib>Didonna, Vittorio</creatorcontrib><creatorcontrib>Fausto, Alfonso</creatorcontrib><creatorcontrib>Lombardi, Angela</creatorcontrib><creatorcontrib>Lorusso, Vito</creatorcontrib><creatorcontrib>Massafra, Raffaella</creatorcontrib><creatorcontrib>Tangaro, Sabina</creatorcontrib><creatorcontrib>La Forgia, Daniele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fanizzi, Annarita</au><au>Losurdo, Liliana</au><au>Basile, Teresa Maria A</au><au>Bellotti, Roberto</au><au>Bottigli, Ubaldo</au><au>Delogu, Pasquale</au><au>Diacono, Domenico</au><au>Didonna, Vittorio</au><au>Fausto, Alfonso</au><au>Lombardi, Angela</au><au>Lorusso, Vito</au><au>Massafra, Raffaella</au><au>Tangaro, Sabina</au><au>La Forgia, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2019-06-21</date><risdate>2019</risdate><volume>8</volume><issue>6</issue><spage>891</spage><pages>891-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>31234363</pmid><doi>10.3390/jcm8060891</doi><orcidid>https://orcid.org/0000-0002-2729-9896</orcidid><orcidid>https://orcid.org/0000-0002-1372-3916</orcidid><orcidid>https://orcid.org/0000-0003-2026-2000</orcidid><orcidid>https://orcid.org/0000-0002-4964-7951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2019-06, Vol.8 (6), p.891 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616937 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
title | Fully Automated Support System for Diagnosis of Breast Cancer in Contrast-Enhanced Spectral Mammography Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Support%20System%20for%20Diagnosis%20of%20Breast%20Cancer%20in%20Contrast-Enhanced%20Spectral%20Mammography%20Images&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Fanizzi,%20Annarita&rft.date=2019-06-21&rft.volume=8&rft.issue=6&rft.spage=891&rft.pages=891-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm8060891&rft_dat=%3Cproquest_pubme%3E2246906640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-7d3d46acccb21fc3cc1eb52507f1f8a8f4ebc81f39fc356e5075ac3f59c270373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2246906640&rft_id=info:pmid/31234363&rfr_iscdi=true |