Loading…

Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum

G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2013-11, Vol.33 (47), p.18661-18671
Main Authors: Kamikubo, Yuji, Shimomura, Takeshi, Fujita, Yosuke, Tabata, Toshihide, Kashiyama, Taku, Sakurai, Takashi, Fukurotani, Kenkichi, Kano, Masanobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813
cites cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813
container_end_page 18671
container_issue 47
container_start_page 18661
container_title The Journal of neuroscience
container_volume 33
creator Kamikubo, Yuji
Shimomura, Takeshi
Fujita, Yosuke
Tabata, Toshihide
Kashiyama, Taku
Sakurai, Takashi
Fukurotani, Kenkichi
Kano, Masanobu
description G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.
doi_str_mv 10.1523/jneurosci.5567-12.2013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551622248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</originalsourceid><addsrcrecordid>eNpVkV9rFDEUxYModlv9CiWPvsw2f2cyL4IsrVaKBbXP4W72zjZlJhmTTGHBD2-W1qJP996ce04SfoScc7bmWsiLh4BLitn5tdZt13CxFozLV2RV1b4RivHXZMVEx5pWdeqEnOb8wBjrGO_ekhOhhO616Vbk99USXPExwEhdjDMmOE40DnTCAttYUpy9o7DDELMPSCHs6H5cCkxQkCZ0OJeYcu32y1iPMp1jLvkQYC7VOI-Qa_XlQH2g5R6pw4RbHMdlekfeDDBmfP9cz8jd1eXPzZfm5vbz9ebTTeM0l6UBI4adMihAqqFD1w9auaHVAnrjZO-c6t1WAOsHB6bTvWJiyyQbjJYSW8PlGfn4lDsv2wl3DkNJMNo5-QnSwUbw9n8l-Hu7j4-2bbkxTNaAD88BKf5aMBc7-ezqHyBgXLLlWvNWCKFMXW2fVl3FkxMOL9dwZo_o7Ndvl3ffb39sru0RneXCHtFV4_m_j3yx_WUl_wBifpxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551622248</pqid></control><display><type>article</type><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><source>PubMed (Medline)</source><creator>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</creator><creatorcontrib>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</creatorcontrib><description>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.5567-12.2013</identifier><identifier>PMID: 24259587</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Bicuculline - analogs &amp; derivatives ; Bicuculline - pharmacology ; Cells, Cultured ; Cerebellum - cytology ; Dose-Response Relationship, Drug ; Embryo, Mammalian ; Energy Transfer ; Excitatory Amino Acid Antagonists - pharmacology ; Green Fluorescent Proteins - genetics ; Humans ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons - cytology ; Neuroprotective Agents - pharmacology ; Quinoxalines - pharmacology ; Rats ; Receptor, Adenosine A1 - genetics ; Receptor, Adenosine A1 - metabolism ; Receptors, Metabotropic Glutamate - genetics ; Receptors, Metabotropic Glutamate - metabolism ; Sodium Channel Blockers - pharmacology ; Tetrodotoxin - pharmacology</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (47), p.18661-18671</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3318661-11$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</citedby><cites>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618803/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618803/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamikubo, Yuji</creatorcontrib><creatorcontrib>Shimomura, Takeshi</creatorcontrib><creatorcontrib>Fujita, Yosuke</creatorcontrib><creatorcontrib>Tabata, Toshihide</creatorcontrib><creatorcontrib>Kashiyama, Taku</creatorcontrib><creatorcontrib>Sakurai, Takashi</creatorcontrib><creatorcontrib>Fukurotani, Kenkichi</creatorcontrib><creatorcontrib>Kano, Masanobu</creatorcontrib><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</description><subject>Animals</subject><subject>Bicuculline - analogs &amp; derivatives</subject><subject>Bicuculline - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cerebellum - cytology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Embryo, Mammalian</subject><subject>Energy Transfer</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - cytology</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Quinoxalines - pharmacology</subject><subject>Rats</subject><subject>Receptor, Adenosine A1 - genetics</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>Receptors, Metabotropic Glutamate - genetics</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkV9rFDEUxYModlv9CiWPvsw2f2cyL4IsrVaKBbXP4W72zjZlJhmTTGHBD2-W1qJP996ce04SfoScc7bmWsiLh4BLitn5tdZt13CxFozLV2RV1b4RivHXZMVEx5pWdeqEnOb8wBjrGO_ekhOhhO616Vbk99USXPExwEhdjDMmOE40DnTCAttYUpy9o7DDELMPSCHs6H5cCkxQkCZ0OJeYcu32y1iPMp1jLvkQYC7VOI-Qa_XlQH2g5R6pw4RbHMdlekfeDDBmfP9cz8jd1eXPzZfm5vbz9ebTTeM0l6UBI4adMihAqqFD1w9auaHVAnrjZO-c6t1WAOsHB6bTvWJiyyQbjJYSW8PlGfn4lDsv2wl3DkNJMNo5-QnSwUbw9n8l-Hu7j4-2bbkxTNaAD88BKf5aMBc7-ezqHyBgXLLlWvNWCKFMXW2fVl3FkxMOL9dwZo_o7Ndvl3ffb39sru0RneXCHtFV4_m_j3yx_WUl_wBifpxs</recordid><startdate>20131120</startdate><enddate>20131120</enddate><creator>Kamikubo, Yuji</creator><creator>Shimomura, Takeshi</creator><creator>Fujita, Yosuke</creator><creator>Tabata, Toshihide</creator><creator>Kashiyama, Taku</creator><creator>Sakurai, Takashi</creator><creator>Fukurotani, Kenkichi</creator><creator>Kano, Masanobu</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131120</creationdate><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><author>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bicuculline - analogs &amp; derivatives</topic><topic>Bicuculline - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cerebellum - cytology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Embryo, Mammalian</topic><topic>Energy Transfer</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - cytology</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Quinoxalines - pharmacology</topic><topic>Rats</topic><topic>Receptor, Adenosine A1 - genetics</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>Receptors, Metabotropic Glutamate - genetics</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamikubo, Yuji</creatorcontrib><creatorcontrib>Shimomura, Takeshi</creatorcontrib><creatorcontrib>Fujita, Yosuke</creatorcontrib><creatorcontrib>Tabata, Toshihide</creatorcontrib><creatorcontrib>Kashiyama, Taku</creatorcontrib><creatorcontrib>Sakurai, Takashi</creatorcontrib><creatorcontrib>Fukurotani, Kenkichi</creatorcontrib><creatorcontrib>Kano, Masanobu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamikubo, Yuji</au><au>Shimomura, Takeshi</au><au>Fujita, Yosuke</au><au>Tabata, Toshihide</au><au>Kashiyama, Taku</au><au>Sakurai, Takashi</au><au>Fukurotani, Kenkichi</au><au>Kano, Masanobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-20</date><risdate>2013</risdate><volume>33</volume><issue>47</issue><spage>18661</spage><epage>18671</epage><pages>18661-18671</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24259587</pmid><doi>10.1523/jneurosci.5567-12.2013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-11, Vol.33 (47), p.18661-18671
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618803
source PubMed (Medline)
subjects Animals
Bicuculline - analogs & derivatives
Bicuculline - pharmacology
Cells, Cultured
Cerebellum - cytology
Dose-Response Relationship, Drug
Embryo, Mammalian
Energy Transfer
Excitatory Amino Acid Antagonists - pharmacology
Green Fluorescent Proteins - genetics
Humans
Mice
Mice, Inbred C57BL
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Neurons - cytology
Neuroprotective Agents - pharmacology
Quinoxalines - pharmacology
Rats
Receptor, Adenosine A1 - genetics
Receptor, Adenosine A1 - metabolism
Receptors, Metabotropic Glutamate - genetics
Receptors, Metabotropic Glutamate - metabolism
Sodium Channel Blockers - pharmacology
Tetrodotoxin - pharmacology
title Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20cooperation%20of%20metabotropic%20adenosine%20and%20glutamate%20receptors%20regulates%20postsynaptic%20plasticity%20in%20the%20cerebellum&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kamikubo,%20Yuji&rft.date=2013-11-20&rft.volume=33&rft.issue=47&rft.spage=18661&rft.epage=18671&rft.pages=18661-18671&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.5567-12.2013&rft_dat=%3Cproquest_pubme%3E1551622248%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551622248&rft_id=info:pmid/24259587&rfr_iscdi=true