Loading…
Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum
G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in...
Saved in:
Published in: | The Journal of neuroscience 2013-11, Vol.33 (47), p.18661-18671 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813 |
container_end_page | 18671 |
container_issue | 47 |
container_start_page | 18661 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Kamikubo, Yuji Shimomura, Takeshi Fujita, Yosuke Tabata, Toshihide Kashiyama, Taku Sakurai, Takashi Fukurotani, Kenkichi Kano, Masanobu |
description | G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity. |
doi_str_mv | 10.1523/jneurosci.5567-12.2013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551622248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</originalsourceid><addsrcrecordid>eNpVkV9rFDEUxYModlv9CiWPvsw2f2cyL4IsrVaKBbXP4W72zjZlJhmTTGHBD2-W1qJP996ce04SfoScc7bmWsiLh4BLitn5tdZt13CxFozLV2RV1b4RivHXZMVEx5pWdeqEnOb8wBjrGO_ekhOhhO616Vbk99USXPExwEhdjDMmOE40DnTCAttYUpy9o7DDELMPSCHs6H5cCkxQkCZ0OJeYcu32y1iPMp1jLvkQYC7VOI-Qa_XlQH2g5R6pw4RbHMdlekfeDDBmfP9cz8jd1eXPzZfm5vbz9ebTTeM0l6UBI4adMihAqqFD1w9auaHVAnrjZO-c6t1WAOsHB6bTvWJiyyQbjJYSW8PlGfn4lDsv2wl3DkNJMNo5-QnSwUbw9n8l-Hu7j4-2bbkxTNaAD88BKf5aMBc7-ezqHyBgXLLlWvNWCKFMXW2fVl3FkxMOL9dwZo_o7Ndvl3ffb39sru0RneXCHtFV4_m_j3yx_WUl_wBifpxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551622248</pqid></control><display><type>article</type><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><source>PubMed (Medline)</source><creator>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</creator><creatorcontrib>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</creatorcontrib><description>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.5567-12.2013</identifier><identifier>PMID: 24259587</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Bicuculline - analogs & derivatives ; Bicuculline - pharmacology ; Cells, Cultured ; Cerebellum - cytology ; Dose-Response Relationship, Drug ; Embryo, Mammalian ; Energy Transfer ; Excitatory Amino Acid Antagonists - pharmacology ; Green Fluorescent Proteins - genetics ; Humans ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - drug effects ; Neuronal Plasticity - physiology ; Neurons - cytology ; Neuroprotective Agents - pharmacology ; Quinoxalines - pharmacology ; Rats ; Receptor, Adenosine A1 - genetics ; Receptor, Adenosine A1 - metabolism ; Receptors, Metabotropic Glutamate - genetics ; Receptors, Metabotropic Glutamate - metabolism ; Sodium Channel Blockers - pharmacology ; Tetrodotoxin - pharmacology</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (47), p.18661-18671</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3318661-11$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</citedby><cites>FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618803/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618803/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamikubo, Yuji</creatorcontrib><creatorcontrib>Shimomura, Takeshi</creatorcontrib><creatorcontrib>Fujita, Yosuke</creatorcontrib><creatorcontrib>Tabata, Toshihide</creatorcontrib><creatorcontrib>Kashiyama, Taku</creatorcontrib><creatorcontrib>Sakurai, Takashi</creatorcontrib><creatorcontrib>Fukurotani, Kenkichi</creatorcontrib><creatorcontrib>Kano, Masanobu</creatorcontrib><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</description><subject>Animals</subject><subject>Bicuculline - analogs & derivatives</subject><subject>Bicuculline - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cerebellum - cytology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Embryo, Mammalian</subject><subject>Energy Transfer</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - cytology</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Quinoxalines - pharmacology</subject><subject>Rats</subject><subject>Receptor, Adenosine A1 - genetics</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>Receptors, Metabotropic Glutamate - genetics</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkV9rFDEUxYModlv9CiWPvsw2f2cyL4IsrVaKBbXP4W72zjZlJhmTTGHBD2-W1qJP996ce04SfoScc7bmWsiLh4BLitn5tdZt13CxFozLV2RV1b4RivHXZMVEx5pWdeqEnOb8wBjrGO_ekhOhhO616Vbk99USXPExwEhdjDMmOE40DnTCAttYUpy9o7DDELMPSCHs6H5cCkxQkCZ0OJeYcu32y1iPMp1jLvkQYC7VOI-Qa_XlQH2g5R6pw4RbHMdlekfeDDBmfP9cz8jd1eXPzZfm5vbz9ebTTeM0l6UBI4adMihAqqFD1w9auaHVAnrjZO-c6t1WAOsHB6bTvWJiyyQbjJYSW8PlGfn4lDsv2wl3DkNJMNo5-QnSwUbw9n8l-Hu7j4-2bbkxTNaAD88BKf5aMBc7-ezqHyBgXLLlWvNWCKFMXW2fVl3FkxMOL9dwZo_o7Ndvl3ffb39sru0RneXCHtFV4_m_j3yx_WUl_wBifpxs</recordid><startdate>20131120</startdate><enddate>20131120</enddate><creator>Kamikubo, Yuji</creator><creator>Shimomura, Takeshi</creator><creator>Fujita, Yosuke</creator><creator>Tabata, Toshihide</creator><creator>Kashiyama, Taku</creator><creator>Sakurai, Takashi</creator><creator>Fukurotani, Kenkichi</creator><creator>Kano, Masanobu</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131120</creationdate><title>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</title><author>Kamikubo, Yuji ; Shimomura, Takeshi ; Fujita, Yosuke ; Tabata, Toshihide ; Kashiyama, Taku ; Sakurai, Takashi ; Fukurotani, Kenkichi ; Kano, Masanobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bicuculline - analogs & derivatives</topic><topic>Bicuculline - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cerebellum - cytology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Embryo, Mammalian</topic><topic>Energy Transfer</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - cytology</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Quinoxalines - pharmacology</topic><topic>Rats</topic><topic>Receptor, Adenosine A1 - genetics</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>Receptors, Metabotropic Glutamate - genetics</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamikubo, Yuji</creatorcontrib><creatorcontrib>Shimomura, Takeshi</creatorcontrib><creatorcontrib>Fujita, Yosuke</creatorcontrib><creatorcontrib>Tabata, Toshihide</creatorcontrib><creatorcontrib>Kashiyama, Taku</creatorcontrib><creatorcontrib>Sakurai, Takashi</creatorcontrib><creatorcontrib>Fukurotani, Kenkichi</creatorcontrib><creatorcontrib>Kano, Masanobu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamikubo, Yuji</au><au>Shimomura, Takeshi</au><au>Fujita, Yosuke</au><au>Tabata, Toshihide</au><au>Kashiyama, Taku</au><au>Sakurai, Takashi</au><au>Fukurotani, Kenkichi</au><au>Kano, Masanobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-20</date><risdate>2013</risdate><volume>33</volume><issue>47</issue><spage>18661</spage><epage>18671</epage><pages>18661-18671</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R), which regulates neurotransmitter release and neuronal excitability in central neurons, and type-1 metabotropic glutamate receptor (mGluR1), which mediates cerebellar long-term depression, a form of synaptic plasticity crucial for cerebellar motor learning. We examined interaction between these GPCRs by immunocytochemical, biochemical, and Förster resonance energy transfer analyses in cultured mouse Purkinje cells and heterologous expression cells. These analyses revealed that the GPCRs closely colocalized and formed heteromeric complexes on the cell surfaces. Furthermore, our electrophysiological analysis showed that CSF levels (40-400 nm) of adenosine or synthetic A1R agonists with comparable potencies blocked mGluR1-mediated long-term depression of the postsynaptic glutamate-responsiveness (glu-LTD) of cultured Purkinje cells. A similar dose of the A1R agonist decreased the ligand affinity of mGluR1 and did not affect depolarization-induced Ca(2+) influx, which is an essential factor in inducing glu-LTD. The A1R agonist did not affect glu-LTD mimicked by direct activation of protein kinase C. These results suggest that A1R blocked glu-LTD by decreasing the ligand sensitivity of mGluR1, but not the coupling efficacy from mGluR1 to the intracellular signaling cascades. These findings provide a new insight into neuronal GPCR signaling and demonstrate a novel regulatory mechanism of synaptic plasticity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24259587</pmid><doi>10.1523/jneurosci.5567-12.2013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-11, Vol.33 (47), p.18661-18671 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6618803 |
source | PubMed (Medline) |
subjects | Animals Bicuculline - analogs & derivatives Bicuculline - pharmacology Cells, Cultured Cerebellum - cytology Dose-Response Relationship, Drug Embryo, Mammalian Energy Transfer Excitatory Amino Acid Antagonists - pharmacology Green Fluorescent Proteins - genetics Humans Mice Mice, Inbred C57BL Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Neurons - cytology Neuroprotective Agents - pharmacology Quinoxalines - pharmacology Rats Receptor, Adenosine A1 - genetics Receptor, Adenosine A1 - metabolism Receptors, Metabotropic Glutamate - genetics Receptors, Metabotropic Glutamate - metabolism Sodium Channel Blockers - pharmacology Tetrodotoxin - pharmacology |
title | Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20cooperation%20of%20metabotropic%20adenosine%20and%20glutamate%20receptors%20regulates%20postsynaptic%20plasticity%20in%20the%20cerebellum&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Kamikubo,%20Yuji&rft.date=2013-11-20&rft.volume=33&rft.issue=47&rft.spage=18661&rft.epage=18671&rft.pages=18661-18671&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.5567-12.2013&rft_dat=%3Cproquest_pubme%3E1551622248%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-a82fd48e2a34f7ec9f54cf652a98c39cc49cb2a09fca8759402b030f8533e6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551622248&rft_id=info:pmid/24259587&rfr_iscdi=true |