Loading…
Gene therapy with apoptosis-associated speck-like protein, a newly described schwannoma tumor suppressor, inhibits schwannoma growth in vivo
Abstract Background We evaluated apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as a schwannoma tumor suppressor and explored its utilization in a schwannoma gene therapy strategy that may be translated to clinical use. Methods ASC protein expression and mRNA l...
Saved in:
Published in: | Neuro-oncology (Charlottesville, Va.) Va.), 2019-07, Vol.21 (7), p.854-866 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Background
We evaluated apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as a schwannoma tumor suppressor and explored its utilization in a schwannoma gene therapy strategy that may be translated to clinical use.
Methods
ASC protein expression and mRNA level were assessed in human schwannoma by immunohistochemistry and quantitative PCR, respectively. Methylation- specific PCR was used to assess ASC promoter methylation. The effect of ASC overexpression in schwannoma cells was evaluated through ATP-based viability, lactate dehydrogenase release, and apoptosis staining. Western blotting and colorimetric assay were used to test the effect of ASC overexpression on endogenous pro-apoptotic pathways. Bioluminescence imaging, behavioral testing, and immunohistochemistry in human xenograft and murine allograft schwannoma models were used to examine the efficacy and toxicity of intratumoral injection of adeno-associated virus (AAV) vector encoding ASC.
Results
ASC expression was suppressed via promoter methylation in over 80% of the human schwannomas tested. ASC overexpression in schwannoma cells results in cell death and is associated with activation of endogenous caspase-9, caspase-3, and upregulation of BH3 interacting-domain death agonist. In a human xenograft schwannoma model, AAV1-mediated ASC delivery reduced tumor growth and resolved tumor-associated pain without detectable toxicity, and tumor control was associated with reduced Ki67 mitotic index and increased tumor-cell apoptosis. Efficacy of this schwannoma gene therapy strategy was confirmed in a murine schwannoma model.
Conclusion
We have identified ASC as a putative schwannoma tumor suppressor with high potential clinical utility for schwannoma gene therapy and generated a vector that treats schwannomas via a novel mechanism that does not overlap with current treatments. |
---|---|
ISSN: | 1522-8517 1523-5866 |
DOI: | 10.1093/neuonc/noz065 |