Loading…
Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration
Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimer...
Saved in:
Published in: | The Journal of neuroscience 2012-05, Vol.32 (21), p.7325-7335 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83 |
container_end_page | 7335 |
container_issue | 21 |
container_start_page | 7325 |
container_title | The Journal of neuroscience |
container_volume | 32 |
creator | Tan, Chin Lik Andrews, Melissa R Kwok, Jessica C F Heintz, Tristan G P Gumy, Laura F Fässler, Reinhard Fawcett, James W |
description | Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions. |
doi_str_mv | 10.1523/jneurosci.5472-11.2012 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1016674314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EokvhL1Q5csnicRw7uSChVUsLVSu19Gw59mTjKmsvtgPsv29CS0VPM5o3781IHyEnQNdQs-rTvccphmTcuuaSlQBrRoG9IqtZbUvGKbwmK8okLQWX_Ii8S-meUiopyLfkiDHBKiGbFZm-O29H50so0A_aG0yF_hN8sY3hdx6KuXN-cJ3LIR4KMwRvY3DZ-SJNY68zFvsYMobteDDaz15vl8lunqUioU-L7W9gxC16jDq74N-TN70eE354qsfk7uz0x-a8vLz-erH5clka3tBccmRtD9AxqntA1tFWG6513wmOlWygbnlru9YigkFrayk7AGw4dLZvatNUx-TzY-5-6nZoDfoc9aj20e10PKignXqpeDeobfilhGCsonQO-PgUEMPPCVNWO5cMjqP2GKakgIIQklfA51XxuGpmLili_3wGqFqYqW9Xp3c317ebC7UwUwBqYTYbT_5_8tn2D1L1ADLzmfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1016674314</pqid></control><display><type>article</type><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><source>Open Access: PubMed Central</source><creator>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</creator><creatorcontrib>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</creatorcontrib><description>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.5472-11.2012</identifier><identifier>PMID: 22623678</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Aggrecans - pharmacology ; Animals ; Axons - metabolism ; Axons - physiology ; Brain - metabolism ; Brain - physiology ; Cells, Cultured ; Ganglia, Spinal - cytology ; Ganglia, Spinal - injuries ; Ganglia, Spinal - metabolism ; Ganglia, Spinal - physiology ; Gene Knockdown Techniques ; Hippocampus - metabolism ; Integrins - metabolism ; Laminin - pharmacology ; Nerve Regeneration - genetics ; Nerve Regeneration - physiology ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Primary Cell Culture ; Purkinje Cells - metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Transgenic ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; Retinal Ganglion Cells - physiology ; Sensory Receptor Cells - cytology ; Sensory Receptor Cells - metabolism ; Sensory Receptor Cells - physiology ; Signal Transduction - genetics ; Signal Transduction - physiology</subject><ispartof>The Journal of neuroscience, 2012-05, Vol.32 (21), p.7325-7335</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/327325-11$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</citedby><cites>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622300/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622300/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22623678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Chin Lik</creatorcontrib><creatorcontrib>Andrews, Melissa R</creatorcontrib><creatorcontrib>Kwok, Jessica C F</creatorcontrib><creatorcontrib>Heintz, Tristan G P</creatorcontrib><creatorcontrib>Gumy, Laura F</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Fawcett, James W</creatorcontrib><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</description><subject>Aggrecans - pharmacology</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Cells, Cultured</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - injuries</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Ganglia, Spinal - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>Hippocampus - metabolism</subject><subject>Integrins - metabolism</subject><subject>Laminin - pharmacology</subject><subject>Nerve Regeneration - genetics</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Primary Cell Culture</subject><subject>Purkinje Cells - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Transgenic</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Sensory Receptor Cells - cytology</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkUFv1DAQhS0EokvhL1Q5csnicRw7uSChVUsLVSu19Gw59mTjKmsvtgPsv29CS0VPM5o3781IHyEnQNdQs-rTvccphmTcuuaSlQBrRoG9IqtZbUvGKbwmK8okLQWX_Ii8S-meUiopyLfkiDHBKiGbFZm-O29H50so0A_aG0yF_hN8sY3hdx6KuXN-cJ3LIR4KMwRvY3DZ-SJNY68zFvsYMobteDDaz15vl8lunqUioU-L7W9gxC16jDq74N-TN70eE354qsfk7uz0x-a8vLz-erH5clka3tBccmRtD9AxqntA1tFWG6513wmOlWygbnlru9YigkFrayk7AGw4dLZvatNUx-TzY-5-6nZoDfoc9aj20e10PKignXqpeDeobfilhGCsonQO-PgUEMPPCVNWO5cMjqP2GKakgIIQklfA51XxuGpmLili_3wGqFqYqW9Xp3c317ebC7UwUwBqYTYbT_5_8tn2D1L1ADLzmfo</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Tan, Chin Lik</creator><creator>Andrews, Melissa R</creator><creator>Kwok, Jessica C F</creator><creator>Heintz, Tristan G P</creator><creator>Gumy, Laura F</creator><creator>Fässler, Reinhard</creator><creator>Fawcett, James W</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120523</creationdate><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><author>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aggrecans - pharmacology</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Cells, Cultured</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - injuries</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Ganglia, Spinal - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>Hippocampus - metabolism</topic><topic>Integrins - metabolism</topic><topic>Laminin - pharmacology</topic><topic>Nerve Regeneration - genetics</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Primary Cell Culture</topic><topic>Purkinje Cells - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Transgenic</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Sensory Receptor Cells - cytology</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Chin Lik</creatorcontrib><creatorcontrib>Andrews, Melissa R</creatorcontrib><creatorcontrib>Kwok, Jessica C F</creatorcontrib><creatorcontrib>Heintz, Tristan G P</creatorcontrib><creatorcontrib>Gumy, Laura F</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Fawcett, James W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Chin Lik</au><au>Andrews, Melissa R</au><au>Kwok, Jessica C F</au><au>Heintz, Tristan G P</au><au>Gumy, Laura F</au><au>Fässler, Reinhard</au><au>Fawcett, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>32</volume><issue>21</issue><spage>7325</spage><epage>7335</epage><pages>7325-7335</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22623678</pmid><doi>10.1523/jneurosci.5472-11.2012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2012-05, Vol.32 (21), p.7325-7335 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622300 |
source | Open Access: PubMed Central |
subjects | Aggrecans - pharmacology Animals Axons - metabolism Axons - physiology Brain - metabolism Brain - physiology Cells, Cultured Ganglia, Spinal - cytology Ganglia, Spinal - injuries Ganglia, Spinal - metabolism Ganglia, Spinal - physiology Gene Knockdown Techniques Hippocampus - metabolism Integrins - metabolism Laminin - pharmacology Nerve Regeneration - genetics Nerve Regeneration - physiology Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - genetics Nerve Tissue Proteins - physiology Peripheral Nerve Injuries - metabolism Peripheral Nerve Injuries - physiopathology Primary Cell Culture Purkinje Cells - metabolism Rats Rats, Sprague-Dawley Rats, Transgenic Retinal Ganglion Cells - cytology Retinal Ganglion Cells - metabolism Retinal Ganglion Cells - physiology Sensory Receptor Cells - cytology Sensory Receptor Cells - metabolism Sensory Receptor Cells - physiology Signal Transduction - genetics Signal Transduction - physiology |
title | Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kindlin-1%20enhances%20axon%20growth%20on%20inhibitory%20chondroitin%20sulfate%20proteoglycans%20and%20promotes%20sensory%20axon%20regeneration&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Tan,%20Chin%20Lik&rft.date=2012-05-23&rft.volume=32&rft.issue=21&rft.spage=7325&rft.epage=7335&rft.pages=7325-7335&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.5472-11.2012&rft_dat=%3Cproquest_pubme%3E1016674314%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1016674314&rft_id=info:pmid/22623678&rfr_iscdi=true |