Loading…

Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration

Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimer...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2012-05, Vol.32 (21), p.7325-7335
Main Authors: Tan, Chin Lik, Andrews, Melissa R, Kwok, Jessica C F, Heintz, Tristan G P, Gumy, Laura F, Fässler, Reinhard, Fawcett, James W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83
cites cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83
container_end_page 7335
container_issue 21
container_start_page 7325
container_title The Journal of neuroscience
container_volume 32
creator Tan, Chin Lik
Andrews, Melissa R
Kwok, Jessica C F
Heintz, Tristan G P
Gumy, Laura F
Fässler, Reinhard
Fawcett, James W
description Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.
doi_str_mv 10.1523/jneurosci.5472-11.2012
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1016674314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EokvhL1Q5csnicRw7uSChVUsLVSu19Gw59mTjKmsvtgPsv29CS0VPM5o3781IHyEnQNdQs-rTvccphmTcuuaSlQBrRoG9IqtZbUvGKbwmK8okLQWX_Ii8S-meUiopyLfkiDHBKiGbFZm-O29H50so0A_aG0yF_hN8sY3hdx6KuXN-cJ3LIR4KMwRvY3DZ-SJNY68zFvsYMobteDDaz15vl8lunqUioU-L7W9gxC16jDq74N-TN70eE354qsfk7uz0x-a8vLz-erH5clka3tBccmRtD9AxqntA1tFWG6513wmOlWygbnlru9YigkFrayk7AGw4dLZvatNUx-TzY-5-6nZoDfoc9aj20e10PKignXqpeDeobfilhGCsonQO-PgUEMPPCVNWO5cMjqP2GKakgIIQklfA51XxuGpmLili_3wGqFqYqW9Xp3c317ebC7UwUwBqYTYbT_5_8tn2D1L1ADLzmfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1016674314</pqid></control><display><type>article</type><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><source>Open Access: PubMed Central</source><creator>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</creator><creatorcontrib>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</creatorcontrib><description>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.5472-11.2012</identifier><identifier>PMID: 22623678</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Aggrecans - pharmacology ; Animals ; Axons - metabolism ; Axons - physiology ; Brain - metabolism ; Brain - physiology ; Cells, Cultured ; Ganglia, Spinal - cytology ; Ganglia, Spinal - injuries ; Ganglia, Spinal - metabolism ; Ganglia, Spinal - physiology ; Gene Knockdown Techniques ; Hippocampus - metabolism ; Integrins - metabolism ; Laminin - pharmacology ; Nerve Regeneration - genetics ; Nerve Regeneration - physiology ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - physiology ; Peripheral Nerve Injuries - metabolism ; Peripheral Nerve Injuries - physiopathology ; Primary Cell Culture ; Purkinje Cells - metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Transgenic ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - metabolism ; Retinal Ganglion Cells - physiology ; Sensory Receptor Cells - cytology ; Sensory Receptor Cells - metabolism ; Sensory Receptor Cells - physiology ; Signal Transduction - genetics ; Signal Transduction - physiology</subject><ispartof>The Journal of neuroscience, 2012-05, Vol.32 (21), p.7325-7335</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/327325-11$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</citedby><cites>FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622300/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622300/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22623678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Chin Lik</creatorcontrib><creatorcontrib>Andrews, Melissa R</creatorcontrib><creatorcontrib>Kwok, Jessica C F</creatorcontrib><creatorcontrib>Heintz, Tristan G P</creatorcontrib><creatorcontrib>Gumy, Laura F</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Fawcett, James W</creatorcontrib><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</description><subject>Aggrecans - pharmacology</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Cells, Cultured</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - injuries</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Ganglia, Spinal - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>Hippocampus - metabolism</subject><subject>Integrins - metabolism</subject><subject>Laminin - pharmacology</subject><subject>Nerve Regeneration - genetics</subject><subject>Nerve Regeneration - physiology</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Peripheral Nerve Injuries - metabolism</subject><subject>Peripheral Nerve Injuries - physiopathology</subject><subject>Primary Cell Culture</subject><subject>Purkinje Cells - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Transgenic</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - metabolism</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Sensory Receptor Cells - cytology</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkUFv1DAQhS0EokvhL1Q5csnicRw7uSChVUsLVSu19Gw59mTjKmsvtgPsv29CS0VPM5o3781IHyEnQNdQs-rTvccphmTcuuaSlQBrRoG9IqtZbUvGKbwmK8okLQWX_Ii8S-meUiopyLfkiDHBKiGbFZm-O29H50so0A_aG0yF_hN8sY3hdx6KuXN-cJ3LIR4KMwRvY3DZ-SJNY68zFvsYMobteDDaz15vl8lunqUioU-L7W9gxC16jDq74N-TN70eE354qsfk7uz0x-a8vLz-erH5clka3tBccmRtD9AxqntA1tFWG6513wmOlWygbnlru9YigkFrayk7AGw4dLZvatNUx-TzY-5-6nZoDfoc9aj20e10PKignXqpeDeobfilhGCsonQO-PgUEMPPCVNWO5cMjqP2GKakgIIQklfA51XxuGpmLili_3wGqFqYqW9Xp3c317ebC7UwUwBqYTYbT_5_8tn2D1L1ADLzmfo</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Tan, Chin Lik</creator><creator>Andrews, Melissa R</creator><creator>Kwok, Jessica C F</creator><creator>Heintz, Tristan G P</creator><creator>Gumy, Laura F</creator><creator>Fässler, Reinhard</creator><creator>Fawcett, James W</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120523</creationdate><title>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</title><author>Tan, Chin Lik ; Andrews, Melissa R ; Kwok, Jessica C F ; Heintz, Tristan G P ; Gumy, Laura F ; Fässler, Reinhard ; Fawcett, James W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aggrecans - pharmacology</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Cells, Cultured</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - injuries</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Ganglia, Spinal - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>Hippocampus - metabolism</topic><topic>Integrins - metabolism</topic><topic>Laminin - pharmacology</topic><topic>Nerve Regeneration - genetics</topic><topic>Nerve Regeneration - physiology</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Peripheral Nerve Injuries - metabolism</topic><topic>Peripheral Nerve Injuries - physiopathology</topic><topic>Primary Cell Culture</topic><topic>Purkinje Cells - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Transgenic</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - metabolism</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Sensory Receptor Cells - cytology</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Chin Lik</creatorcontrib><creatorcontrib>Andrews, Melissa R</creatorcontrib><creatorcontrib>Kwok, Jessica C F</creatorcontrib><creatorcontrib>Heintz, Tristan G P</creatorcontrib><creatorcontrib>Gumy, Laura F</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Fawcett, James W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Chin Lik</au><au>Andrews, Melissa R</au><au>Kwok, Jessica C F</au><au>Heintz, Tristan G P</au><au>Gumy, Laura F</au><au>Fässler, Reinhard</au><au>Fawcett, James W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>32</volume><issue>21</issue><spage>7325</spage><epage>7335</epage><pages>7325-7335</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Growing and regenerating axons need to interact with the molecules in the extracellular matrix as they traverse through their environment. An important group of receptors that serve this function is the integrin superfamily of cell surface receptors, which are evolutionarily conserved αβ heterodimeric transmembrane proteins. The function of integrins is controlled by regulating the affinity for ligands (also called "integrin activation"). Previous results have shown that CNS inhibitory molecules inactivate axonal integrins, while enhancing integrin activation can promote axon growth from neurons cultured on inhibitory substrates. We tested two related molecules, kindlin-1 and kindlin-2 (Fermitin family members 1 and 2), that can activate β1, β2, and β3 integrins, for their effects on integrin signaling and integrin-mediated axon growth in rat sensory neurons. We determined that kindlin-2, but not kindlin-1, is endogenously expressed in the nervous system. Knocking down kindlin-2 levels in cultured sensory neurons impaired their ability to extend axons, but this was partially rescued by kindlin-1 expression. Overexpression of kindlin-1, but not kindlin-2, in cultured neurons increased axon growth on an inhibitory aggrecan substrate. This was found to be associated with enhanced integrin activation and signaling within the axons. Additionally, in an in vivo rat dorsal root injury model, transduction of dorsal root ganglion neurons to express kindlin-1 promoted axon regeneration across the dorsal root entry zone and into the spinal cord. These animals demonstrated improved recovery of thermal sensation following injury. Our results therefore suggest that kindlin-1 is a potential tool for improving axon regeneration after nervous system lesions.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22623678</pmid><doi>10.1523/jneurosci.5472-11.2012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-05, Vol.32 (21), p.7325-7335
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622300
source Open Access: PubMed Central
subjects Aggrecans - pharmacology
Animals
Axons - metabolism
Axons - physiology
Brain - metabolism
Brain - physiology
Cells, Cultured
Ganglia, Spinal - cytology
Ganglia, Spinal - injuries
Ganglia, Spinal - metabolism
Ganglia, Spinal - physiology
Gene Knockdown Techniques
Hippocampus - metabolism
Integrins - metabolism
Laminin - pharmacology
Nerve Regeneration - genetics
Nerve Regeneration - physiology
Nerve Tissue Proteins - biosynthesis
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - physiology
Peripheral Nerve Injuries - metabolism
Peripheral Nerve Injuries - physiopathology
Primary Cell Culture
Purkinje Cells - metabolism
Rats
Rats, Sprague-Dawley
Rats, Transgenic
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
Retinal Ganglion Cells - physiology
Sensory Receptor Cells - cytology
Sensory Receptor Cells - metabolism
Sensory Receptor Cells - physiology
Signal Transduction - genetics
Signal Transduction - physiology
title Kindlin-1 enhances axon growth on inhibitory chondroitin sulfate proteoglycans and promotes sensory axon regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kindlin-1%20enhances%20axon%20growth%20on%20inhibitory%20chondroitin%20sulfate%20proteoglycans%20and%20promotes%20sensory%20axon%20regeneration&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Tan,%20Chin%20Lik&rft.date=2012-05-23&rft.volume=32&rft.issue=21&rft.spage=7325&rft.epage=7335&rft.pages=7325-7335&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.5472-11.2012&rft_dat=%3Cproquest_pubme%3E1016674314%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-4e29f11b20af1e2b09ac4aafb64e37815949db9dee1cedd577b11e841bdf85c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1016674314&rft_id=info:pmid/22623678&rfr_iscdi=true