Loading…
Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes
Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation rema...
Saved in:
Published in: | Blood 2019-07, Vol.134 (2), p.186-198 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93 |
container_end_page | 198 |
container_issue | 2 |
container_start_page | 186 |
container_title | Blood |
container_volume | 134 |
creator | Hsu, Jasper Reilly, Andreea Hayes, Brian J. Clough, Courtnee A. Konnick, Eric Q. Torok-Storb, Beverly Gulsuner, Suleyman Wu, David Becker, Pamela S. Keel, Siobán B. Abkowitz, Janis L. Doulatov, Sergei |
description | Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.
•Reprogramming identifies clonal history and recapitulates disease progression in individual patients with MDS.•Mitochondrial function and chromosome stability are key pathways affected by acquisition of mutations in MDS.
[Display omitted] |
doi_str_mv | 10.1182/blood.2018884338 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6624967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120424231</els_id><sourcerecordid>2213157531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93</originalsourceid><addsrcrecordid>eNp1kc2PFCEQxYnRuOPq3ZPh6KXXAvoDPJiYjV_JJiZGz4SGYsTQzQjdk_R_v4yzrnrwRJH3q0dRj5DnDK4Yk_zVGFNyVxyYlLIVQj4gO9Zx2QBweEh2ANA3rRrYBXlSyg8A1grePSYXggED2aod8V_wkNM-m2kK854Gh_MSfMBC_TrbJaTZxLhRF8oS6p2WxeyrmDy18aRRPKa4njgaZjptGJPbyiGayltattnlNGF5Sh55Ews-uzsvybf3775ef2xuPn_4dP32prEdE0szjq6tFXNYRxdctqMfFIO-E35gXBrXOquk4Ba8USP0oxNoBg_QKiWVVeKSvDn7HtZxQmfrb7KJ-pDDZPKmkwn6X2UO3_U-HXXf81b1QzV4eWeQ088Vy6KnUCzGaGZMa9GcM8G6oROsonBGbU6lZPT3zzDQp3j0r3j0n3hqy4u_x7tv-J1HBV6fAaxLOgbMutiAs0UXMtpFuxT-734Lm2uj3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213157531</pqid></control><display><type>article</type><title>Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes</title><source>Elsevier ScienceDirect Journals</source><creator>Hsu, Jasper ; Reilly, Andreea ; Hayes, Brian J. ; Clough, Courtnee A. ; Konnick, Eric Q. ; Torok-Storb, Beverly ; Gulsuner, Suleyman ; Wu, David ; Becker, Pamela S. ; Keel, Siobán B. ; Abkowitz, Janis L. ; Doulatov, Sergei</creator><creatorcontrib>Hsu, Jasper ; Reilly, Andreea ; Hayes, Brian J. ; Clough, Courtnee A. ; Konnick, Eric Q. ; Torok-Storb, Beverly ; Gulsuner, Suleyman ; Wu, David ; Becker, Pamela S. ; Keel, Siobán B. ; Abkowitz, Janis L. ; Doulatov, Sergei</creatorcontrib><description>Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.
•Reprogramming identifies clonal history and recapitulates disease progression in individual patients with MDS.•Mitochondrial function and chromosome stability are key pathways affected by acquisition of mutations in MDS.
[Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2018884338</identifier><identifier>PMID: 31010849</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cellular Reprogramming ; Clonal Evolution - genetics ; Hematopoietic Stem Cells - pathology ; Humans ; Myelodysplastic Syndromes - genetics ; Myeloid Neoplasia ; Pluripotent Stem Cells - pathology</subject><ispartof>Blood, 2019-07, Vol.134 (2), p.186-198</ispartof><rights>2019 American Society of Hematology</rights><rights>2019 by The American Society of Hematology.</rights><rights>2019 by The American Society of Hematology 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93</citedby><cites>FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93</cites><orcidid>0000-0001-6235-9463 ; 0000-0001-5904-1788 ; 0000-0002-1328-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120424231$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31010849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Jasper</creatorcontrib><creatorcontrib>Reilly, Andreea</creatorcontrib><creatorcontrib>Hayes, Brian J.</creatorcontrib><creatorcontrib>Clough, Courtnee A.</creatorcontrib><creatorcontrib>Konnick, Eric Q.</creatorcontrib><creatorcontrib>Torok-Storb, Beverly</creatorcontrib><creatorcontrib>Gulsuner, Suleyman</creatorcontrib><creatorcontrib>Wu, David</creatorcontrib><creatorcontrib>Becker, Pamela S.</creatorcontrib><creatorcontrib>Keel, Siobán B.</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Doulatov, Sergei</creatorcontrib><title>Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes</title><title>Blood</title><addtitle>Blood</addtitle><description>Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.
•Reprogramming identifies clonal history and recapitulates disease progression in individual patients with MDS.•Mitochondrial function and chromosome stability are key pathways affected by acquisition of mutations in MDS.
[Display omitted]</description><subject>Cellular Reprogramming</subject><subject>Clonal Evolution - genetics</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Humans</subject><subject>Myelodysplastic Syndromes - genetics</subject><subject>Myeloid Neoplasia</subject><subject>Pluripotent Stem Cells - pathology</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc2PFCEQxYnRuOPq3ZPh6KXXAvoDPJiYjV_JJiZGz4SGYsTQzQjdk_R_v4yzrnrwRJH3q0dRj5DnDK4Yk_zVGFNyVxyYlLIVQj4gO9Zx2QBweEh2ANA3rRrYBXlSyg8A1grePSYXggED2aod8V_wkNM-m2kK854Gh_MSfMBC_TrbJaTZxLhRF8oS6p2WxeyrmDy18aRRPKa4njgaZjptGJPbyiGayltattnlNGF5Sh55Ews-uzsvybf3775ef2xuPn_4dP32prEdE0szjq6tFXNYRxdctqMfFIO-E35gXBrXOquk4Ba8USP0oxNoBg_QKiWVVeKSvDn7HtZxQmfrb7KJ-pDDZPKmkwn6X2UO3_U-HXXf81b1QzV4eWeQ088Vy6KnUCzGaGZMa9GcM8G6oROsonBGbU6lZPT3zzDQp3j0r3j0n3hqy4u_x7tv-J1HBV6fAaxLOgbMutiAs0UXMtpFuxT-734Lm2uj3Q</recordid><startdate>20190711</startdate><enddate>20190711</enddate><creator>Hsu, Jasper</creator><creator>Reilly, Andreea</creator><creator>Hayes, Brian J.</creator><creator>Clough, Courtnee A.</creator><creator>Konnick, Eric Q.</creator><creator>Torok-Storb, Beverly</creator><creator>Gulsuner, Suleyman</creator><creator>Wu, David</creator><creator>Becker, Pamela S.</creator><creator>Keel, Siobán B.</creator><creator>Abkowitz, Janis L.</creator><creator>Doulatov, Sergei</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6235-9463</orcidid><orcidid>https://orcid.org/0000-0001-5904-1788</orcidid><orcidid>https://orcid.org/0000-0002-1328-364X</orcidid></search><sort><creationdate>20190711</creationdate><title>Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes</title><author>Hsu, Jasper ; Reilly, Andreea ; Hayes, Brian J. ; Clough, Courtnee A. ; Konnick, Eric Q. ; Torok-Storb, Beverly ; Gulsuner, Suleyman ; Wu, David ; Becker, Pamela S. ; Keel, Siobán B. ; Abkowitz, Janis L. ; Doulatov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cellular Reprogramming</topic><topic>Clonal Evolution - genetics</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Humans</topic><topic>Myelodysplastic Syndromes - genetics</topic><topic>Myeloid Neoplasia</topic><topic>Pluripotent Stem Cells - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Jasper</creatorcontrib><creatorcontrib>Reilly, Andreea</creatorcontrib><creatorcontrib>Hayes, Brian J.</creatorcontrib><creatorcontrib>Clough, Courtnee A.</creatorcontrib><creatorcontrib>Konnick, Eric Q.</creatorcontrib><creatorcontrib>Torok-Storb, Beverly</creatorcontrib><creatorcontrib>Gulsuner, Suleyman</creatorcontrib><creatorcontrib>Wu, David</creatorcontrib><creatorcontrib>Becker, Pamela S.</creatorcontrib><creatorcontrib>Keel, Siobán B.</creatorcontrib><creatorcontrib>Abkowitz, Janis L.</creatorcontrib><creatorcontrib>Doulatov, Sergei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Jasper</au><au>Reilly, Andreea</au><au>Hayes, Brian J.</au><au>Clough, Courtnee A.</au><au>Konnick, Eric Q.</au><au>Torok-Storb, Beverly</au><au>Gulsuner, Suleyman</au><au>Wu, David</au><au>Becker, Pamela S.</au><au>Keel, Siobán B.</au><au>Abkowitz, Janis L.</au><au>Doulatov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2019-07-11</date><risdate>2019</risdate><volume>134</volume><issue>2</issue><spage>186</spage><epage>198</epage><pages>186-198</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.
•Reprogramming identifies clonal history and recapitulates disease progression in individual patients with MDS.•Mitochondrial function and chromosome stability are key pathways affected by acquisition of mutations in MDS.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31010849</pmid><doi>10.1182/blood.2018884338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6235-9463</orcidid><orcidid>https://orcid.org/0000-0001-5904-1788</orcidid><orcidid>https://orcid.org/0000-0002-1328-364X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2019-07, Vol.134 (2), p.186-198 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6624967 |
source | Elsevier ScienceDirect Journals |
subjects | Cellular Reprogramming Clonal Evolution - genetics Hematopoietic Stem Cells - pathology Humans Myelodysplastic Syndromes - genetics Myeloid Neoplasia Pluripotent Stem Cells - pathology |
title | Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20identifies%20functionally%20distinct%20stages%20of%20clonal%20evolution%20in%20myelodysplastic%20syndromes&rft.jtitle=Blood&rft.au=Hsu,%20Jasper&rft.date=2019-07-11&rft.volume=134&rft.issue=2&rft.spage=186&rft.epage=198&rft.pages=186-198&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2018884338&rft_dat=%3Cproquest_pubme%3E2213157531%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-bbd4c511de0003284bf7910653f7128ad4dc9832c0fa9b06bd3ea7f0049989c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2213157531&rft_id=info:pmid/31010849&rfr_iscdi=true |