Loading…

On the Filler Materials of Metal Matrix Syntactic Foams

Metal matrix syntactic foams (MMSFs) are becoming increasingly relevant from the lightweight structural materials point of view. They are also used as energy absorbers and as core materials for sandwich structures. The mechanical properties of MMSFs are extensively influenced by the properties of th...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-06, Vol.12 (12), p.2023
Main Authors: Szlancsik, Attila, Katona, Bálint, Kemény, Alexandra, Károly, Dóra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal matrix syntactic foams (MMSFs) are becoming increasingly relevant from the lightweight structural materials point of view. They are also used as energy absorbers and as core materials for sandwich structures. The mechanical properties of MMSFs are extensively influenced by the properties of their filler materials which are used to create and ensure the porosity inside the metal matrix. As the properties of fillers are of such importance in the case of MMSFs, in this paper three different filler materials: (i) ceramic hollow spheres (CHSs), (ii) metallic hollow spheres (MHSs) and (iii) lightweight expanded clay particles (LECAPs), have been investigated in numerous aspects. The investigations cover the microstructural features of the fillers and the basic mechanical properties of the fillers and the produced MMSFs as well. The microstructure was studied by optical and electron microscopy extended by energy-dispersive X-ray spectrometry, while the basic mechanical properties were mapped by standardized compression tests. It was found that in the terms of cost-awareness the LECAPs are the best fillers, because they are ~100 times cheaper than the CHSs or MHSs, but their mechanical properties can be compared to the aforementioned, relatively expensive filler materials and still exceed the properties of the most 'conventional' metallic foams.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma12122023