Loading…
Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses
The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 an...
Saved in:
Published in: | The Journal of neuroscience 2010-06, Vol.30 (22), p.7634-7645 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3 |
container_end_page | 7645 |
container_issue | 22 |
container_start_page | 7634 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Zander, Johannes-Friedrich Münster-Wandowski, Agnieszka Brunk, Irene Pahner, Ingrid Gómez-Lira, Gisela Heinemann, Uwe Gutiérrez, Rafael Laube, Gregor Ahnert-Hilger, Gudrun |
description | The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity. |
doi_str_mv | 10.1523/jneurosci.0141-10.2010 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6632366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733143017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</originalsourceid><addsrcrecordid>eNpVkV9PwjAUxRujUUS_gtmbT8PbP1vHi4khihgiiYKvTdfdScnocN2MfHs3QKMvvek9554290fIFYUBjRi_WTlsqtIbOwAqaNi2GVA4Ir1WHYZMAD0mPWASwlhIcUbOvV8BgAQqT8kZg4gOI570iHndOr2prQm0y4JP9NY0ha4CU-KX9TU6g0GZB2_j6WK-s7yN7-aBdYHHAk2NWYBfxta6LqvtTrduaVO7u_ou2qO_ICe5LjxeHmqfLB7u56PHcDobT0Z309AIOaxDnWTAdIZS5hAz4FESZbGmoLmRSWIgwhzjSKBmGWCaYC4jSgWLE8ESI7OU98ntPnfTpGvMDLq60oXaVHatq60qtVX_FWeX6r38VHHMGW-PPrk-BFTlR4O-VmvrDRaFdlg2XknOqeDtCltnvHeaFoKvMP99hYLqAKmn5_vFy-x1NFEdoK7dAWoHr_7-8Xfshwj_BmsnkEc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733143017</pqid></control><display><type>article</type><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><source>PubMed Central</source><creator>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</creator><creatorcontrib>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</creatorcontrib><description>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0141-10.2010</identifier><identifier>PMID: 20519538</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain - anatomy & histology ; Freeze Fracturing - methods ; Glutamic Acid - metabolism ; Microscopy, Electron, Transmission - methods ; Nerve Tissue Proteins - metabolism ; Nerve Tissue Proteins - ultrastructure ; Neural Inhibition - physiology ; Neurons - cytology ; Neurotransmitter Agents - metabolism ; Protein Transport - physiology ; Rats ; Subcellular Fractions - metabolism ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic Vesicles - metabolism ; Tritium - metabolism ; Vesicular Glutamate Transport Proteins - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>The Journal of neuroscience, 2010-06, Vol.30 (22), p.7634-7645</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/307634-12$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</citedby><cites>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632366/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632366/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20519538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zander, Johannes-Friedrich</creatorcontrib><creatorcontrib>Münster-Wandowski, Agnieszka</creatorcontrib><creatorcontrib>Brunk, Irene</creatorcontrib><creatorcontrib>Pahner, Ingrid</creatorcontrib><creatorcontrib>Gómez-Lira, Gisela</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Gutiérrez, Rafael</creatorcontrib><creatorcontrib>Laube, Gregor</creatorcontrib><creatorcontrib>Ahnert-Hilger, Gudrun</creatorcontrib><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</description><subject>Animals</subject><subject>Brain - anatomy & histology</subject><subject>Freeze Fracturing - methods</subject><subject>Glutamic Acid - metabolism</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nerve Tissue Proteins - ultrastructure</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - cytology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Subcellular Fractions - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Tritium - metabolism</subject><subject>Vesicular Glutamate Transport Proteins - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkV9PwjAUxRujUUS_gtmbT8PbP1vHi4khihgiiYKvTdfdScnocN2MfHs3QKMvvek9554290fIFYUBjRi_WTlsqtIbOwAqaNi2GVA4Ir1WHYZMAD0mPWASwlhIcUbOvV8BgAQqT8kZg4gOI570iHndOr2prQm0y4JP9NY0ha4CU-KX9TU6g0GZB2_j6WK-s7yN7-aBdYHHAk2NWYBfxta6LqvtTrduaVO7u_ou2qO_ICe5LjxeHmqfLB7u56PHcDobT0Z309AIOaxDnWTAdIZS5hAz4FESZbGmoLmRSWIgwhzjSKBmGWCaYC4jSgWLE8ESI7OU98ntPnfTpGvMDLq60oXaVHatq60qtVX_FWeX6r38VHHMGW-PPrk-BFTlR4O-VmvrDRaFdlg2XknOqeDtCltnvHeaFoKvMP99hYLqAKmn5_vFy-x1NFEdoK7dAWoHr_7-8Xfshwj_BmsnkEc</recordid><startdate>20100602</startdate><enddate>20100602</enddate><creator>Zander, Johannes-Friedrich</creator><creator>Münster-Wandowski, Agnieszka</creator><creator>Brunk, Irene</creator><creator>Pahner, Ingrid</creator><creator>Gómez-Lira, Gisela</creator><creator>Heinemann, Uwe</creator><creator>Gutiérrez, Rafael</creator><creator>Laube, Gregor</creator><creator>Ahnert-Hilger, Gudrun</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100602</creationdate><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><author>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Brain - anatomy & histology</topic><topic>Freeze Fracturing - methods</topic><topic>Glutamic Acid - metabolism</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nerve Tissue Proteins - ultrastructure</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - cytology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Subcellular Fractions - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Tritium - metabolism</topic><topic>Vesicular Glutamate Transport Proteins - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zander, Johannes-Friedrich</creatorcontrib><creatorcontrib>Münster-Wandowski, Agnieszka</creatorcontrib><creatorcontrib>Brunk, Irene</creatorcontrib><creatorcontrib>Pahner, Ingrid</creatorcontrib><creatorcontrib>Gómez-Lira, Gisela</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Gutiérrez, Rafael</creatorcontrib><creatorcontrib>Laube, Gregor</creatorcontrib><creatorcontrib>Ahnert-Hilger, Gudrun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zander, Johannes-Friedrich</au><au>Münster-Wandowski, Agnieszka</au><au>Brunk, Irene</au><au>Pahner, Ingrid</au><au>Gómez-Lira, Gisela</au><au>Heinemann, Uwe</au><au>Gutiérrez, Rafael</au><au>Laube, Gregor</au><au>Ahnert-Hilger, Gudrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-06-02</date><risdate>2010</risdate><volume>30</volume><issue>22</issue><spage>7634</spage><epage>7645</epage><pages>7634-7645</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20519538</pmid><doi>10.1523/jneurosci.0141-10.2010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-06, Vol.30 (22), p.7634-7645 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6632366 |
source | PubMed Central |
subjects | Animals Brain - anatomy & histology Freeze Fracturing - methods Glutamic Acid - metabolism Microscopy, Electron, Transmission - methods Nerve Tissue Proteins - metabolism Nerve Tissue Proteins - ultrastructure Neural Inhibition - physiology Neurons - cytology Neurotransmitter Agents - metabolism Protein Transport - physiology Rats Subcellular Fractions - metabolism Synapses - metabolism Synapses - ultrastructure Synaptic Vesicles - metabolism Tritium - metabolism Vesicular Glutamate Transport Proteins - metabolism Vesicular Inhibitory Amino Acid Transport Proteins - metabolism |
title | Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20and%20vesicular%20coexistence%20of%20VGLUT%20and%20VGAT%20in%20selected%20excitatory%20and%20inhibitory%20synapses&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Zander,%20Johannes-Friedrich&rft.date=2010-06-02&rft.volume=30&rft.issue=22&rft.spage=7634&rft.epage=7645&rft.pages=7634-7645&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0141-10.2010&rft_dat=%3Cproquest_pubme%3E733143017%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733143017&rft_id=info:pmid/20519538&rfr_iscdi=true |