Loading…

Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses

The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 an...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2010-06, Vol.30 (22), p.7634-7645
Main Authors: Zander, Johannes-Friedrich, Münster-Wandowski, Agnieszka, Brunk, Irene, Pahner, Ingrid, Gómez-Lira, Gisela, Heinemann, Uwe, Gutiérrez, Rafael, Laube, Gregor, Ahnert-Hilger, Gudrun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3
cites cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3
container_end_page 7645
container_issue 22
container_start_page 7634
container_title The Journal of neuroscience
container_volume 30
creator Zander, Johannes-Friedrich
Münster-Wandowski, Agnieszka
Brunk, Irene
Pahner, Ingrid
Gómez-Lira, Gisela
Heinemann, Uwe
Gutiérrez, Rafael
Laube, Gregor
Ahnert-Hilger, Gudrun
description The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.
doi_str_mv 10.1523/jneurosci.0141-10.2010
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6632366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733143017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</originalsourceid><addsrcrecordid>eNpVkV9PwjAUxRujUUS_gtmbT8PbP1vHi4khihgiiYKvTdfdScnocN2MfHs3QKMvvek9554290fIFYUBjRi_WTlsqtIbOwAqaNi2GVA4Ir1WHYZMAD0mPWASwlhIcUbOvV8BgAQqT8kZg4gOI570iHndOr2prQm0y4JP9NY0ha4CU-KX9TU6g0GZB2_j6WK-s7yN7-aBdYHHAk2NWYBfxta6LqvtTrduaVO7u_ou2qO_ICe5LjxeHmqfLB7u56PHcDobT0Z309AIOaxDnWTAdIZS5hAz4FESZbGmoLmRSWIgwhzjSKBmGWCaYC4jSgWLE8ESI7OU98ntPnfTpGvMDLq60oXaVHatq60qtVX_FWeX6r38VHHMGW-PPrk-BFTlR4O-VmvrDRaFdlg2XknOqeDtCltnvHeaFoKvMP99hYLqAKmn5_vFy-x1NFEdoK7dAWoHr_7-8Xfshwj_BmsnkEc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733143017</pqid></control><display><type>article</type><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><source>PubMed Central</source><creator>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</creator><creatorcontrib>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</creatorcontrib><description>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.0141-10.2010</identifier><identifier>PMID: 20519538</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain - anatomy &amp; histology ; Freeze Fracturing - methods ; Glutamic Acid - metabolism ; Microscopy, Electron, Transmission - methods ; Nerve Tissue Proteins - metabolism ; Nerve Tissue Proteins - ultrastructure ; Neural Inhibition - physiology ; Neurons - cytology ; Neurotransmitter Agents - metabolism ; Protein Transport - physiology ; Rats ; Subcellular Fractions - metabolism ; Synapses - metabolism ; Synapses - ultrastructure ; Synaptic Vesicles - metabolism ; Tritium - metabolism ; Vesicular Glutamate Transport Proteins - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><ispartof>The Journal of neuroscience, 2010-06, Vol.30 (22), p.7634-7645</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/307634-12$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</citedby><cites>FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632366/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632366/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20519538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zander, Johannes-Friedrich</creatorcontrib><creatorcontrib>Münster-Wandowski, Agnieszka</creatorcontrib><creatorcontrib>Brunk, Irene</creatorcontrib><creatorcontrib>Pahner, Ingrid</creatorcontrib><creatorcontrib>Gómez-Lira, Gisela</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Gutiérrez, Rafael</creatorcontrib><creatorcontrib>Laube, Gregor</creatorcontrib><creatorcontrib>Ahnert-Hilger, Gudrun</creatorcontrib><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</description><subject>Animals</subject><subject>Brain - anatomy &amp; histology</subject><subject>Freeze Fracturing - methods</subject><subject>Glutamic Acid - metabolism</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nerve Tissue Proteins - ultrastructure</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons - cytology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Rats</subject><subject>Subcellular Fractions - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Tritium - metabolism</subject><subject>Vesicular Glutamate Transport Proteins - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkV9PwjAUxRujUUS_gtmbT8PbP1vHi4khihgiiYKvTdfdScnocN2MfHs3QKMvvek9554290fIFYUBjRi_WTlsqtIbOwAqaNi2GVA4Ir1WHYZMAD0mPWASwlhIcUbOvV8BgAQqT8kZg4gOI570iHndOr2prQm0y4JP9NY0ha4CU-KX9TU6g0GZB2_j6WK-s7yN7-aBdYHHAk2NWYBfxta6LqvtTrduaVO7u_ou2qO_ICe5LjxeHmqfLB7u56PHcDobT0Z309AIOaxDnWTAdIZS5hAz4FESZbGmoLmRSWIgwhzjSKBmGWCaYC4jSgWLE8ESI7OU98ntPnfTpGvMDLq60oXaVHatq60qtVX_FWeX6r38VHHMGW-PPrk-BFTlR4O-VmvrDRaFdlg2XknOqeDtCltnvHeaFoKvMP99hYLqAKmn5_vFy-x1NFEdoK7dAWoHr_7-8Xfshwj_BmsnkEc</recordid><startdate>20100602</startdate><enddate>20100602</enddate><creator>Zander, Johannes-Friedrich</creator><creator>Münster-Wandowski, Agnieszka</creator><creator>Brunk, Irene</creator><creator>Pahner, Ingrid</creator><creator>Gómez-Lira, Gisela</creator><creator>Heinemann, Uwe</creator><creator>Gutiérrez, Rafael</creator><creator>Laube, Gregor</creator><creator>Ahnert-Hilger, Gudrun</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100602</creationdate><title>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</title><author>Zander, Johannes-Friedrich ; Münster-Wandowski, Agnieszka ; Brunk, Irene ; Pahner, Ingrid ; Gómez-Lira, Gisela ; Heinemann, Uwe ; Gutiérrez, Rafael ; Laube, Gregor ; Ahnert-Hilger, Gudrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Brain - anatomy &amp; histology</topic><topic>Freeze Fracturing - methods</topic><topic>Glutamic Acid - metabolism</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nerve Tissue Proteins - ultrastructure</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons - cytology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Rats</topic><topic>Subcellular Fractions - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Tritium - metabolism</topic><topic>Vesicular Glutamate Transport Proteins - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zander, Johannes-Friedrich</creatorcontrib><creatorcontrib>Münster-Wandowski, Agnieszka</creatorcontrib><creatorcontrib>Brunk, Irene</creatorcontrib><creatorcontrib>Pahner, Ingrid</creatorcontrib><creatorcontrib>Gómez-Lira, Gisela</creatorcontrib><creatorcontrib>Heinemann, Uwe</creatorcontrib><creatorcontrib>Gutiérrez, Rafael</creatorcontrib><creatorcontrib>Laube, Gregor</creatorcontrib><creatorcontrib>Ahnert-Hilger, Gudrun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zander, Johannes-Friedrich</au><au>Münster-Wandowski, Agnieszka</au><au>Brunk, Irene</au><au>Pahner, Ingrid</au><au>Gómez-Lira, Gisela</au><au>Heinemann, Uwe</au><au>Gutiérrez, Rafael</au><au>Laube, Gregor</au><au>Ahnert-Hilger, Gudrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-06-02</date><risdate>2010</risdate><volume>30</volume><issue>22</issue><spage>7634</spage><epage>7645</epage><pages>7634-7645</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addition to GABA. Furthermore, VGLUT activity enhances uptake of GABA and monoamines. Postembedding immunogold double labeling revealed that VGLUT1, VGLUT2, and VGAT coexist in mossy fiber terminals of the hippocampal CA3 area. Similarly, cerebellar mossy fiber terminals harbor VGLUT1, VGLUT2, and VGAT, while parallel and climbing fiber terminals exclusively contain VGLUT1 or VGLUT2, respectively. VGLUT2 was also observed in cerebellar GABAergic basket cells terminals. We conclude that the synaptic coexistence of vesicular glutamate and GABA transporters allows for corelease of both glutamate and GABA from selected nerve terminals, which may prevent systemic overexcitability by downregulating synaptic activity. Furthermore, our data suggest that VGLUT enhances transmitter storage in nonglutamatergic neurons. Thus, synaptic and vesicular coexistence of VGLUT and VGAT is more widespread than previously anticipated, putatively influencing fine-tuning and control of synaptic plasticity.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>20519538</pmid><doi>10.1523/jneurosci.0141-10.2010</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2010-06, Vol.30 (22), p.7634-7645
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6632366
source PubMed Central
subjects Animals
Brain - anatomy & histology
Freeze Fracturing - methods
Glutamic Acid - metabolism
Microscopy, Electron, Transmission - methods
Nerve Tissue Proteins - metabolism
Nerve Tissue Proteins - ultrastructure
Neural Inhibition - physiology
Neurons - cytology
Neurotransmitter Agents - metabolism
Protein Transport - physiology
Rats
Subcellular Fractions - metabolism
Synapses - metabolism
Synapses - ultrastructure
Synaptic Vesicles - metabolism
Tritium - metabolism
Vesicular Glutamate Transport Proteins - metabolism
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
title Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20and%20vesicular%20coexistence%20of%20VGLUT%20and%20VGAT%20in%20selected%20excitatory%20and%20inhibitory%20synapses&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Zander,%20Johannes-Friedrich&rft.date=2010-06-02&rft.volume=30&rft.issue=22&rft.spage=7634&rft.epage=7645&rft.pages=7634-7645&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.0141-10.2010&rft_dat=%3Cproquest_pubme%3E733143017%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-a8d02ade77f06203585d6a10a3c788c05efe654ea2d0eb8ef75114268428c7db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733143017&rft_id=info:pmid/20519538&rfr_iscdi=true