Loading…

Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation

Single-unit recordings in macaque monkeys have identified effector-specific regions in posterior parietal cortex (PPC), but functional neuroimaging in the human has yielded controversial results. Here we used on-line repetitive transcranial magnetic stimulation (rTMS) to determine saccade and reach...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2010-09, Vol.30 (39), p.13053-13065
Main Authors: Vesia, Michael, Prime, Steven L, Yan, Xiaogang, Sergio, Lauren E, Crawford, J Douglas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Single-unit recordings in macaque monkeys have identified effector-specific regions in posterior parietal cortex (PPC), but functional neuroimaging in the human has yielded controversial results. Here we used on-line repetitive transcranial magnetic stimulation (rTMS) to determine saccade and reach specificity in human PPC. A short train of three TMS pulses (separated by an interval of 100 ms) was delivered to superior parieto-occipital cortex (SPOC), a region over the midposterior intraparietal sulcus (mIPS), and a site close to caudal IPS situated over the angular gyrus (AG) during a brief memory interval while subjects planned either a saccade or reach with the left or right hand. Behavioral measures then were compared to controls without rTMS. Stimulation of mIPS and AG produced similar patterns: increased end-point variability for reaches and decreased saccade accuracy for contralateral targets. In contrast, stimulation of SPOC deviated reach end points toward visual fixation and had no effect on saccades. Contralateral-limb specificity was highest for AG and lowest for SPOC. Visual feedback of the hand negated rTMS-induced disruptions of the reach plan for mIPS and AG, but not SPOC. These results suggest that human SPOC is specialized for encoding retinally peripheral reach goals, whereas more anterior-lateral regions (mIPS and AG) along the IPS possess overlapping maps for saccade and reach planning and are more closely involved in motor details (i.e., planning the reach vector for a specific hand). This work provides the first causal evidence for functional specificity of these parietal regions in healthy humans.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1644-10.2010