Loading…

Sensory input drives multiple intracellular information streams in somatosensory cortex

Stable perception arises from the interaction between sensory inputs and internal activity fluctuations in cortex. Here we analyzed how different types of activity contribute to cortical sensory processing at the cellular scale. We performed whole-cell recordings in the barrel cortex of anesthetized...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2010-08, Vol.30 (32), p.10872-10884
Main Authors: Alenda, Andrea, Molano-Mazón, Manuel, Panzeri, Stefano, Maravall, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stable perception arises from the interaction between sensory inputs and internal activity fluctuations in cortex. Here we analyzed how different types of activity contribute to cortical sensory processing at the cellular scale. We performed whole-cell recordings in the barrel cortex of anesthetized rats while applying ongoing whisker stimulation and measured the information conveyed about the time-varying stimulus by different types of input (membrane potential) and output (spiking) signals. We found that substantial, comparable amounts of incoming information are carried by two types of membrane potential signal: slow, large (up-down state) fluctuations, and faster (>20 Hz), smaller-amplitude synaptic activity. Both types of activity fluctuation are therefore significantly driven by the stimulus on an ongoing basis. Each stream conveys essentially independent information. Output (spiking) information is contained in spike timing not just relative to the stimulus but also relative to membrane potential fluctuations. Information transfer is favored in up states relative to down states. Thus, slow, ongoing activity fluctuations and finer-scale synaptic activity generate multiple channels for incoming and outgoing information within barrel cortex neurons during ongoing stimulation.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.6174-09.2010