Loading…
Paradoxical relationship in sensorimotor system: Knee joint position sense absolute error and joint stiffness measures
Relationships between joint position sense and the sensorimotor characteristics such as joint stiffness, time to detect motion, and time to peak torque during a perturbation test have rarely been investigated due to methodological challenges. The purpose of this study was to compare joint position s...
Saved in:
Published in: | Clinical biomechanics (Bristol) 2019-07, Vol.67, p.34-37 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Relationships between joint position sense and the sensorimotor characteristics such as joint stiffness, time to detect motion, and time to peak torque during a perturbation test have rarely been investigated due to methodological challenges. The purpose of this study was to compare joint position sense and the sensorimotor characteristics in healthy individuals.
A total of 26 subjects were recruited and completed joint position sense and a perturbation test on isokinetic dynamometer. Joint position sense was assessed by comparison of the absolute angle difference between a reference and replicated position. During the perturbation test, the dynamometer moved the knee flexion angle from 70° to 30° (0° represents a full knee extension) at the velocity of 500° per second at random. Subjects were asked to react and pull back the leg as soon as they perceived the movement. Pearson or Spearman's correlation coefficients were used to assess these relationships (P |
---|---|
ISSN: | 0268-0033 1879-1271 |
DOI: | 10.1016/j.clinbiomech.2019.04.021 |