Loading…
Ultraviolet A and Ultraviolet C Light-Induced Reduction of Surface Hydrocarbons on Titanium Implants
Abstract Objective The carbon, titanium, and oxygen levels on titanium implant surfaces with or without ultraviolet (UV) pretreatment were evaluated at different wavelengths through X-ray photoelectron spectroscopy (XPS). Materials and Methods This interventional experimental study was conducted on...
Saved in:
Published in: | European journal of dentistry 2019-02, Vol.13 (1), p.114-118 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Objective
The carbon, titanium, and oxygen levels on titanium implant surfaces with or without ultraviolet (UV) pretreatment were evaluated at different wavelengths through X-ray photoelectron spectroscopy (XPS).
Materials and Methods
This interventional experimental study was conducted on nine Dio UFII implants with hybrid sandblasted and acid-etched (SLA) surface treatments, divided equally into three groups. Control group A samples were not given UV irradiation, while groups B and C samples were given UVA (382 nm, 25 mWcm
2
) and UVC (260 nm, 15 mWcm
2
) irradiation, respectively. The atomic ratio of carbon, titanium, and oxygen was compared through XPS.
Results
Mean carbon-to-titanium ratio and C1 peaks considerably increased in Group A compared to those in experimental Groups B and C. The intensity of Ti2p and O1s peaks was more pronounced for group C compared to that for groups A and B.
Conclusions
Although the decrease in surface hydrocarbons was the same in both UV-treated groups, the peak intensity of oxygen increased in the UVC-treated group. Thus, it can be concluded that compared with UVA irradiation, UVC irradiation has the potential to induce more hydrophilicity on SLA-coated implants. |
---|---|
ISSN: | 1305-7456 1305-7464 |
DOI: | 10.1055/s-0039-1688741 |