Loading…
Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons
We theoretically address the electronic structure of mono- and simple bi-layer armchair graphene nanoribbons (AGNRs) when they are infected by extrinsic charged dilute impurity. This is done with the aid of the modified tight-binding method considering the edge effects and the Green’s function appro...
Saved in:
Published in: | Scientific reports 2019-07, Vol.9 (1), p.10651-12, Article 10651 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically address the electronic structure of mono- and simple bi-layer armchair graphene nanoribbons (AGNRs) when they are infected by extrinsic charged dilute impurity. This is done with the aid of the
modified
tight-binding method considering the
edge effects
and the Green’s function approach. Also, the interplay of host and guest electrons are studied within the full self-consistent Born approximation. Given that the main basic electronic features can be captured from the electronic density of states (DOS), we focus on the perturbed DOS of lattices corresponding to the different widths. The modified model says that there is no metallic phase due to the edge states. We found that the impurity effects lead to the emergence of midgap states in DOS of both systems so that a semiconductor-to-semimetal phase transition occurs at strong enough impurity concentrations and/or impurity scattering potentials. The intensity of semiconductor-to-semimetal phase transition in monolayer (bilayer) ultra-narrow (realistic) ribbons is sharper than bilayers (monolayers). In both lattices, electron-hole symmetry breaks down as a result of induced-impurity states. The findings of this research would provide a base for future experimental studies and improve the applications of AGNRs in logic semiconductor devices in industry. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-47015-9 |