Loading…

Classification of Functional Metagenomes Recovered from Different Environmental Samples

Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic vari...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformation 2019-01, Vol.15 (1), p.26-31
Main Authors: Akond, Zobaer, Hasan, Mohammad Nazmol, Alam, Md Jahangir, Alam, Munirul, Mollah, Md Nurul Haque
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613
cites
container_end_page 31
container_issue 1
container_start_page 26
container_title Bioinformation
container_volume 15
creator Akond, Zobaer
Hasan, Mohammad Nazmol
Alam, Md Jahangir
Alam, Munirul
Mollah, Md Nurul Haque
description Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).
doi_str_mv 10.6026/97320630015026
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209579709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoVqtXj7LgxUt1stlszEWQ-gmK4AceQzad1JTdTU12C_73plSlesqbyW8ekzxCDiiclJCXp1KwHEoGQHkqN8gOpM5o2dpc0wOyG-MMoKBC8G0yYJRxKSXfIW_jWsforDO6c77NvM2u-9Ysta6zB-z0FFvfYMye0PgFBpxkNvgmu3TWpqrtsqt24YJvm6TTyLNu5jXGPbJldR1x__scktfrq5fx7ej-8eZufHE_Mqw460YVWKOZNUgZMs2Q87LiwhhhdC4nFfIKKlNIqRkvJghnBdDciLyqhGVUlpQNyfnKd95XDU5MWiLoWs2Da3T4VF479femde9q6heqLDmFXCSD42-D4D96jJ1qXDRY17pF30eV56UAygRlCT36h858H9I_LSmQXEgBMlEnK8oEH2NA-7sMBbXMTP3NLA0crj_hF_8JiX0B7ouTAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209579709</pqid></control><display><type>article</type><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><source>PubMed (Medline)</source><creator>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque</creator><creatorcontrib>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque ; Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><description>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</description><identifier>ISSN: 0973-2063</identifier><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>DOI: 10.6026/97320630015026</identifier><identifier>PMID: 31359995</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics</publisher><subject>Bayesian analysis ; Classification ; Classifiers ; Communities ; Machine learning ; Mathematical analysis ; Microorganisms ; Statistical methods</subject><ispartof>Bioinformation, 2019-01, Vol.15 (1), p.26-31</ispartof><rights>Copyright Biomedical Informatics 2019</rights><rights>2019 Biomedical Informatics 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31359995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akond, Zobaer</creatorcontrib><creatorcontrib>Hasan, Mohammad Nazmol</creatorcontrib><creatorcontrib>Alam, Md Jahangir</creatorcontrib><creatorcontrib>Alam, Munirul</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><creatorcontrib>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Communities</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Microorganisms</subject><subject>Statistical methods</subject><issn>0973-2063</issn><issn>0973-8894</issn><issn>0973-2063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMoVqtXj7LgxUt1stlszEWQ-gmK4AceQzad1JTdTU12C_73plSlesqbyW8ekzxCDiiclJCXp1KwHEoGQHkqN8gOpM5o2dpc0wOyG-MMoKBC8G0yYJRxKSXfIW_jWsforDO6c77NvM2u-9Ysta6zB-z0FFvfYMye0PgFBpxkNvgmu3TWpqrtsqt24YJvm6TTyLNu5jXGPbJldR1x__scktfrq5fx7ej-8eZufHE_Mqw460YVWKOZNUgZMs2Q87LiwhhhdC4nFfIKKlNIqRkvJghnBdDciLyqhGVUlpQNyfnKd95XDU5MWiLoWs2Da3T4VF479femde9q6heqLDmFXCSD42-D4D96jJ1qXDRY17pF30eV56UAygRlCT36h858H9I_LSmQXEgBMlEnK8oEH2NA-7sMBbXMTP3NLA0crj_hF_8JiX0B7ouTAw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Akond, Zobaer</creator><creator>Hasan, Mohammad Nazmol</creator><creator>Alam, Md Jahangir</creator><creator>Alam, Munirul</creator><creator>Mollah, Md Nurul Haque</creator><general>Biomedical Informatics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><author>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Communities</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Microorganisms</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Akond, Zobaer</creatorcontrib><creatorcontrib>Hasan, Mohammad Nazmol</creatorcontrib><creatorcontrib>Alam, Md Jahangir</creatorcontrib><creatorcontrib>Alam, Munirul</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><creatorcontrib>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akond, Zobaer</au><au>Hasan, Mohammad Nazmol</au><au>Alam, Md Jahangir</au><au>Alam, Munirul</au><au>Mollah, Md Nurul Haque</au><aucorp>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Functional Metagenomes Recovered from Different Environmental Samples</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>26</spage><epage>31</epage><pages>26-31</pages><issn>0973-2063</issn><issn>0973-8894</issn><eissn>0973-2063</eissn><abstract>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</abstract><cop>Singapore</cop><pub>Biomedical Informatics</pub><pmid>31359995</pmid><doi>10.6026/97320630015026</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-2063
ispartof Bioinformation, 2019-01, Vol.15 (1), p.26-31
issn 0973-2063
0973-8894
0973-2063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651027
source PubMed (Medline)
subjects Bayesian analysis
Classification
Classifiers
Communities
Machine learning
Mathematical analysis
Microorganisms
Statistical methods
title Classification of Functional Metagenomes Recovered from Different Environmental Samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Functional%20Metagenomes%20Recovered%20from%20Different%20Environmental%20Samples&rft.jtitle=Bioinformation&rft.au=Akond,%20Zobaer&rft.aucorp=Bioinformatics%20Lab,%20Department%20of%20Statistics,%20University%20of%20Rajshahi,%20Rajshahi-6205,%20Bangladesh&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=26&rft.epage=31&rft.pages=26-31&rft.issn=0973-2063&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630015026&rft_dat=%3Cproquest_pubme%3E2209579709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209579709&rft_id=info:pmid/31359995&rfr_iscdi=true