Loading…
Classification of Functional Metagenomes Recovered from Different Environmental Samples
Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic vari...
Saved in:
Published in: | Bioinformation 2019-01, Vol.15 (1), p.26-31 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613 |
---|---|
cites | |
container_end_page | 31 |
container_issue | 1 |
container_start_page | 26 |
container_title | Bioinformation |
container_volume | 15 |
creator | Akond, Zobaer Hasan, Mohammad Nazmol Alam, Md Jahangir Alam, Munirul Mollah, Md Nurul Haque |
description | Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost). |
doi_str_mv | 10.6026/97320630015026 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209579709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoVqtXj7LgxUt1stlszEWQ-gmK4AceQzad1JTdTU12C_73plSlesqbyW8ekzxCDiiclJCXp1KwHEoGQHkqN8gOpM5o2dpc0wOyG-MMoKBC8G0yYJRxKSXfIW_jWsforDO6c77NvM2u-9Ysta6zB-z0FFvfYMye0PgFBpxkNvgmu3TWpqrtsqt24YJvm6TTyLNu5jXGPbJldR1x__scktfrq5fx7ej-8eZufHE_Mqw460YVWKOZNUgZMs2Q87LiwhhhdC4nFfIKKlNIqRkvJghnBdDciLyqhGVUlpQNyfnKd95XDU5MWiLoWs2Da3T4VF479femde9q6heqLDmFXCSD42-D4D96jJ1qXDRY17pF30eV56UAygRlCT36h858H9I_LSmQXEgBMlEnK8oEH2NA-7sMBbXMTP3NLA0crj_hF_8JiX0B7ouTAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209579709</pqid></control><display><type>article</type><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><source>PubMed (Medline)</source><creator>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque</creator><creatorcontrib>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque ; Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><description>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</description><identifier>ISSN: 0973-2063</identifier><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>DOI: 10.6026/97320630015026</identifier><identifier>PMID: 31359995</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics</publisher><subject>Bayesian analysis ; Classification ; Classifiers ; Communities ; Machine learning ; Mathematical analysis ; Microorganisms ; Statistical methods</subject><ispartof>Bioinformation, 2019-01, Vol.15 (1), p.26-31</ispartof><rights>Copyright Biomedical Informatics 2019</rights><rights>2019 Biomedical Informatics 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651027/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651027/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31359995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akond, Zobaer</creatorcontrib><creatorcontrib>Hasan, Mohammad Nazmol</creatorcontrib><creatorcontrib>Alam, Md Jahangir</creatorcontrib><creatorcontrib>Alam, Munirul</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><creatorcontrib>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Communities</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Microorganisms</subject><subject>Statistical methods</subject><issn>0973-2063</issn><issn>0973-8894</issn><issn>0973-2063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMoVqtXj7LgxUt1stlszEWQ-gmK4AceQzad1JTdTU12C_73plSlesqbyW8ekzxCDiiclJCXp1KwHEoGQHkqN8gOpM5o2dpc0wOyG-MMoKBC8G0yYJRxKSXfIW_jWsforDO6c77NvM2u-9Ysta6zB-z0FFvfYMye0PgFBpxkNvgmu3TWpqrtsqt24YJvm6TTyLNu5jXGPbJldR1x__scktfrq5fx7ej-8eZufHE_Mqw460YVWKOZNUgZMs2Q87LiwhhhdC4nFfIKKlNIqRkvJghnBdDciLyqhGVUlpQNyfnKd95XDU5MWiLoWs2Da3T4VF479femde9q6heqLDmFXCSD42-D4D96jJ1qXDRY17pF30eV56UAygRlCT36h858H9I_LSmQXEgBMlEnK8oEH2NA-7sMBbXMTP3NLA0crj_hF_8JiX0B7ouTAw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Akond, Zobaer</creator><creator>Hasan, Mohammad Nazmol</creator><creator>Alam, Md Jahangir</creator><creator>Alam, Munirul</creator><creator>Mollah, Md Nurul Haque</creator><general>Biomedical Informatics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>Classification of Functional Metagenomes Recovered from Different Environmental Samples</title><author>Akond, Zobaer ; Hasan, Mohammad Nazmol ; Alam, Md Jahangir ; Alam, Munirul ; Mollah, Md Nurul Haque</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Communities</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Microorganisms</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Akond, Zobaer</creatorcontrib><creatorcontrib>Hasan, Mohammad Nazmol</creatorcontrib><creatorcontrib>Alam, Md Jahangir</creatorcontrib><creatorcontrib>Alam, Munirul</creatorcontrib><creatorcontrib>Mollah, Md Nurul Haque</creatorcontrib><creatorcontrib>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akond, Zobaer</au><au>Hasan, Mohammad Nazmol</au><au>Alam, Md Jahangir</au><au>Alam, Munirul</au><au>Mollah, Md Nurul Haque</au><aucorp>Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Functional Metagenomes Recovered from Different Environmental Samples</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>15</volume><issue>1</issue><spage>26</spage><epage>31</epage><pages>26-31</pages><issn>0973-2063</issn><issn>0973-8894</issn><eissn>0973-2063</eissn><abstract>Classification of functional metagenomes from the microbial community plays the vital role in the metagenomics research. In this paper, an investigation was made to study the performance of beta-t random forest classifier for classification of metagenomics data. Nine key functional meta-genomic variables were selected using the beta-t test statistic from the 10 different microbial community using p-value at 5% level of significance. Then beta-t random forest classifier showed the higher accuracy (96%), true positive rate (96%) and lower false positive rate (5%), false discovery rate (5%) and misclassification error rate (5%) for classification of metagenomes. This method showed the better performance compare to Bayes, SVM, KNN, AdaBoost and LogitBoost).</abstract><cop>Singapore</cop><pub>Biomedical Informatics</pub><pmid>31359995</pmid><doi>10.6026/97320630015026</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-2063 |
ispartof | Bioinformation, 2019-01, Vol.15 (1), p.26-31 |
issn | 0973-2063 0973-8894 0973-2063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6651027 |
source | PubMed (Medline) |
subjects | Bayesian analysis Classification Classifiers Communities Machine learning Mathematical analysis Microorganisms Statistical methods |
title | Classification of Functional Metagenomes Recovered from Different Environmental Samples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Functional%20Metagenomes%20Recovered%20from%20Different%20Environmental%20Samples&rft.jtitle=Bioinformation&rft.au=Akond,%20Zobaer&rft.aucorp=Bioinformatics%20Lab,%20Department%20of%20Statistics,%20University%20of%20Rajshahi,%20Rajshahi-6205,%20Bangladesh&rft.date=2019-01-01&rft.volume=15&rft.issue=1&rft.spage=26&rft.epage=31&rft.pages=26-31&rft.issn=0973-2063&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630015026&rft_dat=%3Cproquest_pubme%3E2209579709%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-b0fca3fce13e3a3e556b57cc7ca29dbe5b0bc499a354de084012c72bb7f319613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209579709&rft_id=info:pmid/31359995&rfr_iscdi=true |