Loading…

Hypoxia Signaling in the Skeleton: Implications for Bone Health

Purpose of Review We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to...

Full description

Saved in:
Bibliographic Details
Published in:Current osteoporosis reports 2019-02, Vol.17 (1), p.26-35
Main Authors: Yellowley, Clare E., Genetos, Damian C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663
cites cdi_FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663
container_end_page 35
container_issue 1
container_start_page 26
container_title Current osteoporosis reports
container_volume 17
creator Yellowley, Clare E.
Genetos, Damian C.
description Purpose of Review We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. Recent Findings Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Summary Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.
doi_str_mv 10.1007/s11914-019-00500-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6653634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184522463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0E4lH4AxxQjlwCXjvOgwMIEFAkJA6Fs-U4m9QltYudIvrvCaQguHDalWZ2dvQRcgj0BCjNTgNAAUlMoYgpFZTG6QbZBZEkMWMJbK53yDO-Q_ZCmFHKGCR8m-xwmjHBGeySi_Fq4d6Niiamsao1tomMjbopRpMXbLFz9iy6ny9ao1VnnA1R7Xx05SxGY1RtN90nW7VqAx6s54g83948XY_jh8e7--vLh1gLYF1claXQKWdFUSIqXWuVILKKC6hUnrGC10zlNSshU1zUgBpEpbKsyFErrdOUj8j5kLtYlnOsNNrOq1YuvJkrv5JOGflXsWYqG_cm01TwlCd9wPE6wLvXJYZOzk3Q2LbKolsGySBPRM8t5b2VDVbtXQge6583QOUneTmQlz15-UVefhY8-l3w5-QbdW_ggyH0km3Qy5lb-p55-C_2AwaSkB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184522463</pqid></control><display><type>article</type><title>Hypoxia Signaling in the Skeleton: Implications for Bone Health</title><source>Springer Link</source><creator>Yellowley, Clare E. ; Genetos, Damian C.</creator><creatorcontrib>Yellowley, Clare E. ; Genetos, Damian C.</creatorcontrib><description>Purpose of Review We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. Recent Findings Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Summary Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.</description><identifier>ISSN: 1544-1873</identifier><identifier>EISSN: 1544-2241</identifier><identifier>DOI: 10.1007/s11914-019-00500-6</identifier><identifier>PMID: 30725321</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Bone and Bones - metabolism ; Bone Density - physiology ; Bone Regeneration - physiology ; Epidemiology ; Humans ; Hypoxia - metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Medicine ; Medicine &amp; Public Health ; Mice ; Neovascularization, Physiologic - physiology ; Orthopedics ; Osteocytes - metabolism ; Osteogenesis - physiology ; Oxygen - metabolism ; Section Editors ; Skeletal Biology and Regulation (M Forwood and A Robling ; Topical Collection on Skeletal Biology and Regulation ; Wnt Signaling Pathway - physiology</subject><ispartof>Current osteoporosis reports, 2019-02, Vol.17 (1), p.26-35</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663</citedby><cites>FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30725321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yellowley, Clare E.</creatorcontrib><creatorcontrib>Genetos, Damian C.</creatorcontrib><title>Hypoxia Signaling in the Skeleton: Implications for Bone Health</title><title>Current osteoporosis reports</title><addtitle>Curr Osteoporos Rep</addtitle><addtitle>Curr Osteoporos Rep</addtitle><description>Purpose of Review We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. Recent Findings Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Summary Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Density - physiology</subject><subject>Bone Regeneration - physiology</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Orthopedics</subject><subject>Osteocytes - metabolism</subject><subject>Osteogenesis - physiology</subject><subject>Oxygen - metabolism</subject><subject>Section Editors</subject><subject>Skeletal Biology and Regulation (M Forwood and A Robling</subject><subject>Topical Collection on Skeletal Biology and Regulation</subject><subject>Wnt Signaling Pathway - physiology</subject><issn>1544-1873</issn><issn>1544-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0E4lH4AxxQjlwCXjvOgwMIEFAkJA6Fs-U4m9QltYudIvrvCaQguHDalWZ2dvQRcgj0BCjNTgNAAUlMoYgpFZTG6QbZBZEkMWMJbK53yDO-Q_ZCmFHKGCR8m-xwmjHBGeySi_Fq4d6Niiamsao1tomMjbopRpMXbLFz9iy6ny9ao1VnnA1R7Xx05SxGY1RtN90nW7VqAx6s54g83948XY_jh8e7--vLh1gLYF1claXQKWdFUSIqXWuVILKKC6hUnrGC10zlNSshU1zUgBpEpbKsyFErrdOUj8j5kLtYlnOsNNrOq1YuvJkrv5JOGflXsWYqG_cm01TwlCd9wPE6wLvXJYZOzk3Q2LbKolsGySBPRM8t5b2VDVbtXQge6583QOUneTmQlz15-UVefhY8-l3w5-QbdW_ggyH0km3Qy5lb-p55-C_2AwaSkB0</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yellowley, Clare E.</creator><creator>Genetos, Damian C.</creator><general>Springer US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190201</creationdate><title>Hypoxia Signaling in the Skeleton: Implications for Bone Health</title><author>Yellowley, Clare E. ; Genetos, Damian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Density - physiology</topic><topic>Bone Regeneration - physiology</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Orthopedics</topic><topic>Osteocytes - metabolism</topic><topic>Osteogenesis - physiology</topic><topic>Oxygen - metabolism</topic><topic>Section Editors</topic><topic>Skeletal Biology and Regulation (M Forwood and A Robling</topic><topic>Topical Collection on Skeletal Biology and Regulation</topic><topic>Wnt Signaling Pathway - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yellowley, Clare E.</creatorcontrib><creatorcontrib>Genetos, Damian C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current osteoporosis reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yellowley, Clare E.</au><au>Genetos, Damian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia Signaling in the Skeleton: Implications for Bone Health</atitle><jtitle>Current osteoporosis reports</jtitle><stitle>Curr Osteoporos Rep</stitle><addtitle>Curr Osteoporos Rep</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>26</spage><epage>35</epage><pages>26-35</pages><issn>1544-1873</issn><eissn>1544-2241</eissn><abstract>Purpose of Review We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. Recent Findings Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Summary Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30725321</pmid><doi>10.1007/s11914-019-00500-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1544-1873
ispartof Current osteoporosis reports, 2019-02, Vol.17 (1), p.26-35
issn 1544-1873
1544-2241
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6653634
source Springer Link
subjects Animals
Basic Helix-Loop-Helix Transcription Factors - metabolism
Bone and Bones - metabolism
Bone Density - physiology
Bone Regeneration - physiology
Epidemiology
Humans
Hypoxia - metabolism
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Medicine
Medicine & Public Health
Mice
Neovascularization, Physiologic - physiology
Orthopedics
Osteocytes - metabolism
Osteogenesis - physiology
Oxygen - metabolism
Section Editors
Skeletal Biology and Regulation (M Forwood and A Robling
Topical Collection on Skeletal Biology and Regulation
Wnt Signaling Pathway - physiology
title Hypoxia Signaling in the Skeleton: Implications for Bone Health
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20Signaling%20in%20the%20Skeleton:%20Implications%20for%20Bone%20Health&rft.jtitle=Current%20osteoporosis%20reports&rft.au=Yellowley,%20Clare%20E.&rft.date=2019-02-01&rft.volume=17&rft.issue=1&rft.spage=26&rft.epage=35&rft.pages=26-35&rft.issn=1544-1873&rft.eissn=1544-2241&rft_id=info:doi/10.1007/s11914-019-00500-6&rft_dat=%3Cproquest_pubme%3E2184522463%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-dbb5c63299beeacfca4ee2d351da87293f2a8f2b17a35f1ec15da7798ecacc663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184522463&rft_id=info:pmid/30725321&rfr_iscdi=true