Loading…

Brain insulin resistance and altered brain glucose are related to memory impairments in schizophrenia

Memory is robustly impaired in schizophrenia (SZ) and related to functional outcome. Memory dysfunction has been shown to be related to altered brain glucose metabolism and brain insulin resistance in animal models and human studies of Alzheimer's disease. In this study, differences in brain gl...

Full description

Saved in:
Bibliographic Details
Published in:Schizophrenia research 2019-06, Vol.208, p.324-330
Main Authors: Wijtenburg, S. Andrea, Kapogiannis, Dimitrios, Korenic, Stephanie A., Mullins, Roger J., Tran, Joyce, Gaston, Frank E., Chen, Shuo, Mustapic, Maja, Hong, L. Elliot, Rowland, Laura M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Memory is robustly impaired in schizophrenia (SZ) and related to functional outcome. Memory dysfunction has been shown to be related to altered brain glucose metabolism and brain insulin resistance in animal models and human studies of Alzheimer's disease. In this study, differences in brain glucose using magnetic resonance spectroscopy (MRS) and blood Extracellular Vesicle (EV) biomarkers of neuronal insulin resistance (i.e. Akt and signaling effectors) between SZ and controls were investigated, as well as whether these measures were related to memory impairments. Neuronal insulin resistance biomarkers showed a trend for being lower in SZ compared to controls, and memory measures were lower in SZ compared to controls. Occipital cortex glucose was higher in SZ compared to controls indicating lower brain glucose utilization. Linear regression analyses revealed significant relationships between neuronal insulin resistance biomarkers, memory measures, and brain glucose. More specifically, p70S6K, an insulin signaling effector, was related to verbal learning and brain MRS glucose in the SZ group. For the first time, we show that memory impairments in SZ may be related to brain glucose and brain insulin resistance. These data suggest that brain insulin resistance may play a role in the pathophysiology of learning and memory dysfunction in SZ.
ISSN:0920-9964
1573-2509
DOI:10.1016/j.schres.2019.01.031