Loading…
Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population
Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none h...
Saved in:
Published in: | Indian journal of clinical biochemistry 2019-07, Vol.34 (3), p.304-311 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3 |
container_end_page | 311 |
container_issue | 3 |
container_start_page | 304 |
container_title | Indian journal of clinical biochemistry |
container_volume | 34 |
creator | Masoud, M. Kengne, A. P. Erasmus, R. T. Hon, G. M. Macharia, M. Matsha, T. E. |
description | Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R
2
was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all
p
values |
doi_str_mv | 10.1007/s12291-018-0748-8 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714408136</galeid><sourcerecordid>A714408136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEoqXwA7ggS1zgkDJ2HDu5IK22fFRaBGILV8txJruuHLvYCYJ_j5ctpYsA-WBr5pnXM6O3KB5TOKUA8kWijLW0BNqUIHlTNneKY2glL4EzdvfnG0ra0vqoeJDSJUDFgdP7xVFFq5ZKBsdFeIc6zRF78hljmhNZamdmp6ccWY_aOXKGPiFZna3K5TY4TBPG4Ij2fUZjb8OIk-6Cs4ZcRG2nRKwnmqzDPG3JYojWaE8-hKudpg3-YXFv0C7ho-v7pPj0-tXF8m25ev_mfLlYlaZu26lssBsY66uuGmhTc8BO1KapegOU96Cl0VXHkRrQQhhTGTYIEI3UgrVdZyRWJ8XLve7V3I3YG_RT1E5dRTvq-F0FbdVhxtut2oSvSggBNWNZ4Nm1QAxf5jy2Gm0y6Jz2GOakGJMAtK6ZzOjTP9DLMEefx8uU4IJlxfq_FNDcPNTiFrXRDpX1Q8jdmd3XaiEp59DQSmTq9C9UPj2O1gSPg83xg4LnBwWZmfDbtNFzSup8_fGQpXvWxJBSxOFmaxTUzndq7zuVfad2vlNNrnlye903Fb-MlgG2B1JO-Q3G39P_W_UHBb_g0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016870565</pqid></control><display><type>article</type><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><source>Springer Nature</source><source>PubMed Central</source><creator>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</creator><creatorcontrib>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</creatorcontrib><description>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R
2
was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all
p
values < 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</description><identifier>ISSN: 0970-1915</identifier><identifier>EISSN: 0974-0422</identifier><identifier>DOI: 10.1007/s12291-018-0748-8</identifier><identifier>PMID: 31391720</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Analysis ; Biochemistry ; Biomedical and Life Sciences ; Blood cholesterol ; Body mass index ; Chemistry/Food Science ; Cholesterol ; Density ; Diabetes ; Diabetes mellitus ; Enzymes ; High density lipoprotein ; Life Sciences ; Low density lipoprotein ; Low density lipoproteins ; Measurement ; Medical screening ; Metabolic disorders ; Microbiology ; Original ; Original Research Article ; Pathology ; Population ; Population density ; Population levels ; Prediabetic state ; Risk factors</subject><ispartof>Indian journal of clinical biochemistry, 2019-07, Vol.34 (3), p.304-311</ispartof><rights>Association of Clinical Biochemists of India 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Indian Journal of Clinical Biochemistry is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</citedby><cites>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660522/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660522/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31391720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masoud, M.</creatorcontrib><creatorcontrib>Kengne, A. P.</creatorcontrib><creatorcontrib>Erasmus, R. T.</creatorcontrib><creatorcontrib>Hon, G. M.</creatorcontrib><creatorcontrib>Macharia, M.</creatorcontrib><creatorcontrib>Matsha, T. E.</creatorcontrib><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><title>Indian journal of clinical biochemistry</title><addtitle>Ind J Clin Biochem</addtitle><addtitle>Indian J Clin Biochem</addtitle><description>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R
2
was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all
p
values < 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Blood cholesterol</subject><subject>Body mass index</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Density</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Enzymes</subject><subject>High density lipoprotein</subject><subject>Life Sciences</subject><subject>Low density lipoprotein</subject><subject>Low density lipoproteins</subject><subject>Measurement</subject><subject>Medical screening</subject><subject>Metabolic disorders</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Pathology</subject><subject>Population</subject><subject>Population density</subject><subject>Population levels</subject><subject>Prediabetic state</subject><subject>Risk factors</subject><issn>0970-1915</issn><issn>0974-0422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEoqXwA7ggS1zgkDJ2HDu5IK22fFRaBGILV8txJruuHLvYCYJ_j5ctpYsA-WBr5pnXM6O3KB5TOKUA8kWijLW0BNqUIHlTNneKY2glL4EzdvfnG0ra0vqoeJDSJUDFgdP7xVFFq5ZKBsdFeIc6zRF78hljmhNZamdmp6ccWY_aOXKGPiFZna3K5TY4TBPG4Ij2fUZjb8OIk-6Cs4ZcRG2nRKwnmqzDPG3JYojWaE8-hKudpg3-YXFv0C7ho-v7pPj0-tXF8m25ev_mfLlYlaZu26lssBsY66uuGmhTc8BO1KapegOU96Cl0VXHkRrQQhhTGTYIEI3UgrVdZyRWJ8XLve7V3I3YG_RT1E5dRTvq-F0FbdVhxtut2oSvSggBNWNZ4Nm1QAxf5jy2Gm0y6Jz2GOakGJMAtK6ZzOjTP9DLMEefx8uU4IJlxfq_FNDcPNTiFrXRDpX1Q8jdmd3XaiEp59DQSmTq9C9UPj2O1gSPg83xg4LnBwWZmfDbtNFzSup8_fGQpXvWxJBSxOFmaxTUzndq7zuVfad2vlNNrnlye903Fb-MlgG2B1JO-Q3G39P_W_UHBb_g0A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Masoud, M.</creator><creator>Kengne, A. P.</creator><creator>Erasmus, R. T.</creator><creator>Hon, G. M.</creator><creator>Macharia, M.</creator><creator>Matsha, T. E.</creator><general>Springer India</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190701</creationdate><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><author>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Blood cholesterol</topic><topic>Body mass index</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Density</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Enzymes</topic><topic>High density lipoprotein</topic><topic>Life Sciences</topic><topic>Low density lipoprotein</topic><topic>Low density lipoproteins</topic><topic>Measurement</topic><topic>Medical screening</topic><topic>Metabolic disorders</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Pathology</topic><topic>Population</topic><topic>Population density</topic><topic>Population levels</topic><topic>Prediabetic state</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masoud, M.</creatorcontrib><creatorcontrib>Kengne, A. P.</creatorcontrib><creatorcontrib>Erasmus, R. T.</creatorcontrib><creatorcontrib>Hon, G. M.</creatorcontrib><creatorcontrib>Macharia, M.</creatorcontrib><creatorcontrib>Matsha, T. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indian journal of clinical biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masoud, M.</au><au>Kengne, A. P.</au><au>Erasmus, R. T.</au><au>Hon, G. M.</au><au>Macharia, M.</au><au>Matsha, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</atitle><jtitle>Indian journal of clinical biochemistry</jtitle><stitle>Ind J Clin Biochem</stitle><addtitle>Indian J Clin Biochem</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>304</spage><epage>311</epage><pages>304-311</pages><issn>0970-1915</issn><eissn>0974-0422</eissn><abstract>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R
2
was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all
p
values < 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>31391720</pmid><doi>10.1007/s12291-018-0748-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0970-1915 |
ispartof | Indian journal of clinical biochemistry, 2019-07, Vol.34 (3), p.304-311 |
issn | 0970-1915 0974-0422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660522 |
source | Springer Nature; PubMed Central |
subjects | Analysis Biochemistry Biomedical and Life Sciences Blood cholesterol Body mass index Chemistry/Food Science Cholesterol Density Diabetes Diabetes mellitus Enzymes High density lipoprotein Life Sciences Low density lipoprotein Low density lipoproteins Measurement Medical screening Metabolic disorders Microbiology Original Original Research Article Pathology Population Population density Population levels Prediabetic state Risk factors |
title | Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measured%20Versus%20Calculated%20Small%20Dense%20LDL-Cholesterol%20and%20Cardiometabolic%20Traits%20in%20a%20South%20African%20Population&rft.jtitle=Indian%20journal%20of%20clinical%20biochemistry&rft.au=Masoud,%20M.&rft.date=2019-07-01&rft.volume=34&rft.issue=3&rft.spage=304&rft.epage=311&rft.pages=304-311&rft.issn=0970-1915&rft.eissn=0974-0422&rft_id=info:doi/10.1007/s12291-018-0748-8&rft_dat=%3Cgale_pubme%3EA714408136%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016870565&rft_id=info:pmid/31391720&rft_galeid=A714408136&rfr_iscdi=true |