Loading…

Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population

Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none h...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of clinical biochemistry 2019-07, Vol.34 (3), p.304-311
Main Authors: Masoud, M., Kengne, A. P., Erasmus, R. T., Hon, G. M., Macharia, M., Matsha, T. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3
cites cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3
container_end_page 311
container_issue 3
container_start_page 304
container_title Indian journal of clinical biochemistry
container_volume 34
creator Masoud, M.
Kengne, A. P.
Erasmus, R. T.
Hon, G. M.
Macharia, M.
Matsha, T. E.
description Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R 2 was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all p values 
doi_str_mv 10.1007/s12291-018-0748-8
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714408136</galeid><sourcerecordid>A714408136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEoqXwA7ggS1zgkDJ2HDu5IK22fFRaBGILV8txJruuHLvYCYJ_j5ctpYsA-WBr5pnXM6O3KB5TOKUA8kWijLW0BNqUIHlTNneKY2glL4EzdvfnG0ra0vqoeJDSJUDFgdP7xVFFq5ZKBsdFeIc6zRF78hljmhNZamdmp6ccWY_aOXKGPiFZna3K5TY4TBPG4Ij2fUZjb8OIk-6Cs4ZcRG2nRKwnmqzDPG3JYojWaE8-hKudpg3-YXFv0C7ho-v7pPj0-tXF8m25ev_mfLlYlaZu26lssBsY66uuGmhTc8BO1KapegOU96Cl0VXHkRrQQhhTGTYIEI3UgrVdZyRWJ8XLve7V3I3YG_RT1E5dRTvq-F0FbdVhxtut2oSvSggBNWNZ4Nm1QAxf5jy2Gm0y6Jz2GOakGJMAtK6ZzOjTP9DLMEefx8uU4IJlxfq_FNDcPNTiFrXRDpX1Q8jdmd3XaiEp59DQSmTq9C9UPj2O1gSPg83xg4LnBwWZmfDbtNFzSup8_fGQpXvWxJBSxOFmaxTUzndq7zuVfad2vlNNrnlye903Fb-MlgG2B1JO-Q3G39P_W_UHBb_g0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016870565</pqid></control><display><type>article</type><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><source>Springer Nature</source><source>PubMed Central</source><creator>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</creator><creatorcontrib>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</creatorcontrib><description>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R 2 was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all p values &lt; 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</description><identifier>ISSN: 0970-1915</identifier><identifier>EISSN: 0974-0422</identifier><identifier>DOI: 10.1007/s12291-018-0748-8</identifier><identifier>PMID: 31391720</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Analysis ; Biochemistry ; Biomedical and Life Sciences ; Blood cholesterol ; Body mass index ; Chemistry/Food Science ; Cholesterol ; Density ; Diabetes ; Diabetes mellitus ; Enzymes ; High density lipoprotein ; Life Sciences ; Low density lipoprotein ; Low density lipoproteins ; Measurement ; Medical screening ; Metabolic disorders ; Microbiology ; Original ; Original Research Article ; Pathology ; Population ; Population density ; Population levels ; Prediabetic state ; Risk factors</subject><ispartof>Indian journal of clinical biochemistry, 2019-07, Vol.34 (3), p.304-311</ispartof><rights>Association of Clinical Biochemists of India 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Indian Journal of Clinical Biochemistry is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</citedby><cites>FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660522/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660522/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31391720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masoud, M.</creatorcontrib><creatorcontrib>Kengne, A. P.</creatorcontrib><creatorcontrib>Erasmus, R. T.</creatorcontrib><creatorcontrib>Hon, G. M.</creatorcontrib><creatorcontrib>Macharia, M.</creatorcontrib><creatorcontrib>Matsha, T. E.</creatorcontrib><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><title>Indian journal of clinical biochemistry</title><addtitle>Ind J Clin Biochem</addtitle><addtitle>Indian J Clin Biochem</addtitle><description>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R 2 was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all p values &lt; 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Blood cholesterol</subject><subject>Body mass index</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Density</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Enzymes</subject><subject>High density lipoprotein</subject><subject>Life Sciences</subject><subject>Low density lipoprotein</subject><subject>Low density lipoproteins</subject><subject>Measurement</subject><subject>Medical screening</subject><subject>Metabolic disorders</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Pathology</subject><subject>Population</subject><subject>Population density</subject><subject>Population levels</subject><subject>Prediabetic state</subject><subject>Risk factors</subject><issn>0970-1915</issn><issn>0974-0422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kk1v1DAQhiMEoqXwA7ggS1zgkDJ2HDu5IK22fFRaBGILV8txJruuHLvYCYJ_j5ctpYsA-WBr5pnXM6O3KB5TOKUA8kWijLW0BNqUIHlTNneKY2glL4EzdvfnG0ra0vqoeJDSJUDFgdP7xVFFq5ZKBsdFeIc6zRF78hljmhNZamdmp6ccWY_aOXKGPiFZna3K5TY4TBPG4Ij2fUZjb8OIk-6Cs4ZcRG2nRKwnmqzDPG3JYojWaE8-hKudpg3-YXFv0C7ho-v7pPj0-tXF8m25ev_mfLlYlaZu26lssBsY66uuGmhTc8BO1KapegOU96Cl0VXHkRrQQhhTGTYIEI3UgrVdZyRWJ8XLve7V3I3YG_RT1E5dRTvq-F0FbdVhxtut2oSvSggBNWNZ4Nm1QAxf5jy2Gm0y6Jz2GOakGJMAtK6ZzOjTP9DLMEefx8uU4IJlxfq_FNDcPNTiFrXRDpX1Q8jdmd3XaiEp59DQSmTq9C9UPj2O1gSPg83xg4LnBwWZmfDbtNFzSup8_fGQpXvWxJBSxOFmaxTUzndq7zuVfad2vlNNrnlye903Fb-MlgG2B1JO-Q3G39P_W_UHBb_g0A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Masoud, M.</creator><creator>Kengne, A. P.</creator><creator>Erasmus, R. T.</creator><creator>Hon, G. M.</creator><creator>Macharia, M.</creator><creator>Matsha, T. E.</creator><general>Springer India</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190701</creationdate><title>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</title><author>Masoud, M. ; Kengne, A. P. ; Erasmus, R. T. ; Hon, G. M. ; Macharia, M. ; Matsha, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Blood cholesterol</topic><topic>Body mass index</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Density</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Enzymes</topic><topic>High density lipoprotein</topic><topic>Life Sciences</topic><topic>Low density lipoprotein</topic><topic>Low density lipoproteins</topic><topic>Measurement</topic><topic>Medical screening</topic><topic>Metabolic disorders</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Pathology</topic><topic>Population</topic><topic>Population density</topic><topic>Population levels</topic><topic>Prediabetic state</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masoud, M.</creatorcontrib><creatorcontrib>Kengne, A. P.</creatorcontrib><creatorcontrib>Erasmus, R. T.</creatorcontrib><creatorcontrib>Hon, G. M.</creatorcontrib><creatorcontrib>Macharia, M.</creatorcontrib><creatorcontrib>Matsha, T. E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indian journal of clinical biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masoud, M.</au><au>Kengne, A. P.</au><au>Erasmus, R. T.</au><au>Hon, G. M.</au><au>Macharia, M.</au><au>Matsha, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population</atitle><jtitle>Indian journal of clinical biochemistry</jtitle><stitle>Ind J Clin Biochem</stitle><addtitle>Indian J Clin Biochem</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>304</spage><epage>311</epage><pages>304-311</pages><issn>0970-1915</issn><eissn>0974-0422</eissn><abstract>Small-dense low density lipoprotein (sdLDL) is increasingly viewed as a marker for evaluating atherogenic risk, however its clinical uptake is hampered by the cumbersomeness of available methods. Consequently, a number of alternative methods for the estimation of sdLDL have been developed and none have been tested in a population from Africa. We evaluated an equation to estimate sdLDL-C from classic lipid parameters in South Africans. This is a cross-sectional study involving 1550 participants in which direct measurement of sdLDL in 237 participants was performed using a homogeneous enzymatic assay. Their mean age (standard deviation, SD) was 54.2 (14.7) years. 156 (65.8%) were normotolerant, 29 (12.2%) prediabetes, 17 (7.2%) screen detected diabetes and 35 (14.8%) known diabetes. Measured sdLDL values ranged from 0.17 to 3.39 versus—1.85 to 2.52 mmol/L calculated sdLDL. There was a significant positive correlation between the two measurements with a Pearson correlation coefficient of 0.659 (95%CI: 0.581–0.726). In a regression model, the adjusted R 2 was 0.440 after adding age, 0.441 after further adding gender, then 0.443 with dysglycemia and lastly 0.447 upon adding body mass index. With the exception of HDL-cholesterol levels that decreased across increasing quintiles of calculated sdLDL, our data showed significant correlations between sdLDL and cardiometabolic risk factors, all p values &lt; 0.0001. In conclusion, this study has shown that calculated sdLDL can be efficiently used to approximate population levels of sdLDL; however the modest correlation indicate that at the individual level, it will poorly approximate true sdLDL levels, with possible implications for risk stratification.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>31391720</pmid><doi>10.1007/s12291-018-0748-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0970-1915
ispartof Indian journal of clinical biochemistry, 2019-07, Vol.34 (3), p.304-311
issn 0970-1915
0974-0422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660522
source Springer Nature; PubMed Central
subjects Analysis
Biochemistry
Biomedical and Life Sciences
Blood cholesterol
Body mass index
Chemistry/Food Science
Cholesterol
Density
Diabetes
Diabetes mellitus
Enzymes
High density lipoprotein
Life Sciences
Low density lipoprotein
Low density lipoproteins
Measurement
Medical screening
Metabolic disorders
Microbiology
Original
Original Research Article
Pathology
Population
Population density
Population levels
Prediabetic state
Risk factors
title Measured Versus Calculated Small Dense LDL-Cholesterol and Cardiometabolic Traits in a South African Population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measured%20Versus%20Calculated%20Small%20Dense%20LDL-Cholesterol%20and%20Cardiometabolic%20Traits%20in%20a%20South%20African%20Population&rft.jtitle=Indian%20journal%20of%20clinical%20biochemistry&rft.au=Masoud,%20M.&rft.date=2019-07-01&rft.volume=34&rft.issue=3&rft.spage=304&rft.epage=311&rft.pages=304-311&rft.issn=0970-1915&rft.eissn=0974-0422&rft_id=info:doi/10.1007/s12291-018-0748-8&rft_dat=%3Cgale_pubme%3EA714408136%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c599t-8ebf22d3b3f18540eb65c83dc014d0a7ca3b4e1c0a66cc3c2f60687a629bbc7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2016870565&rft_id=info:pmid/31391720&rft_galeid=A714408136&rfr_iscdi=true