Loading…

Evaluation of Bilateral Asymmetry in the Humerus of Human Skeletal Specimen

Several studies have established a relationship between morphological and behavioral asymmetry making investigations of bilateral bone asymmetry an attractive and important research area. The purpose of this study was to investigate bilateral asymmetry patterns of skeletal specimen from five geograp...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2019, Vol.2019 (2019), p.1-11
Main Authors: Ekanem, Peter E., Mugagga, Kintu, Masilili, Godfery, Dare, Samuel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several studies have established a relationship between morphological and behavioral asymmetry making investigations of bilateral bone asymmetry an attractive and important research area. The purpose of this study was to investigate bilateral asymmetry patterns of skeletal specimen from five geographical locations (Rwanda, Burundi, Congo, Kenya, and Uganda) at Galloway Osteological Collection, Department of Anatomy, School of Biomedical Sciences, Makerere University College of Health Sciences. The angle of torsion and retroversion, mid-shaft circumference, length, and weight of 232 pairs of humeri were determined. A Torsiometer was used to measure the angle of torsion in degrees according to Krahl and Evans 1945, a tape was used to measure the mid-shaft circumference at the level of the apex of the deltoid V, and the length in cm was determined. An osteometric board was used to measure the length of the humerus in centimeters. A weighing balance was used to measure the weight of the humerus in grams. The analysis of humeral asymmetry with respect to parameters of the human skeletal specimen at the Galloway Osteological Collection Mulago revealed bilateral asymmetrical status observed in the angle of torsion, length, weight, and mid-shaft circumference. Our result mostly showed lateralization to the right in all the parameters investigated except the torsion angle which is to the left. Our investigation revealed that humeral torsion is inversely proportional to weight, length, and mid-shaft circumference of the humerus. This study established the existence of bilateral asymmetries in the humeri of all the geographical regions investigated with more asymmetry observed in the male compared with the female.
ISSN:2314-6133
2314-6141
DOI:10.1155/2019/3194912