Loading…
Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease
Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protoco...
Saved in:
Published in: | Scientific reports 2019-07, Vol.9 (1), p.10955-9, Article 10955 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 10955 |
container_title | Scientific reports |
container_volume | 9 |
creator | Wang, Ming Ramasamy, Vijay Sankar Samidurai, Manikandan Jo, Jihoon |
description | Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models. |
doi_str_mv | 10.1038/s41598-019-47452-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267022313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVm3_AAdkiQuXgD8SO7kgrVYUkFZqD-VsOc5k11USB09SqZz4G_y9_hJm2VJaDvhgW35v3szzy7JXgr8TXFXvsRBlXeVc1HlhilLm-ll2LHlR5lJJ-fzR_Sg7Q7zmtEpZF6J-mR0pocqqKtVxhiu_zMAS4JxcGGdGJyDSww0kBGRhmFxI0LLN1SULI5t3wHZhmqJ3hPRsvRJE3oY47tEhLgi0t9Ajix1b9d93EAZIdz9-ImsDgkM4zV50rkc4uz9Psq_nH6_Wn_PNxacv69Um9-Rozg0Y4M6Ure54weuK1742qhIGGtNWXnPjCt8J35SikVJ1xG688SUUheCd4eok-3DQnZZmgNbDSB57O6UwuHRrowv2KTKGnd3GG6u1ljWXJPD2XiDFbwt9kR0Ceuh7NwIZtVJqw6m1UER98w_1Oi5pJHt7llaCZtoLygPLp4iYoHsYRnC7j9UeYrUUq_0dq9VU9PqxjYeSPyESQR0ISNC4hfS3939kfwHW-a9u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266314102</pqid></control><display><type>article</type><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</creator><creatorcontrib>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</creatorcontrib><description>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-47452-6</identifier><identifier>PMID: 31358853</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 631/378/1689/1283 ; 631/378/340 ; 631/378/87 ; 64 ; 64/110 ; 64/60 ; 82 ; 82/29 ; 9/30 ; 96/95 ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Animal models ; Animals ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - pathology ; Dexamethasone ; Disease Models, Animal ; Glucocorticoid receptors ; Hippocampal plasticity ; Hippocampus ; Humanities and Social Sciences ; Ion channels ; Long-Term Potentiation ; Male ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neuronal Plasticity ; Phosphorylation ; Receptors, AMPA - metabolism ; Restraint, Physical - psychology ; Science ; Science (multidisciplinary) ; Stress, Psychological - metabolism ; Synapses ; Synaptic plasticity ; Synaptic Transmission</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10955-9, Article 10955</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</citedby><cites>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2266314102/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2266314102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31358853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Ramasamy, Vijay Sankar</creatorcontrib><creatorcontrib>Samidurai, Manikandan</creatorcontrib><creatorcontrib>Jo, Jihoon</creatorcontrib><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</description><subject>13/1</subject><subject>631/378/1689/1283</subject><subject>631/378/340</subject><subject>631/378/87</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>9/30</subject><subject>96/95</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - pathology</subject><subject>Dexamethasone</subject><subject>Disease Models, Animal</subject><subject>Glucocorticoid receptors</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Long-Term Potentiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Phosphorylation</subject><subject>Receptors, AMPA - metabolism</subject><subject>Restraint, Physical - psychology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress, Psychological - metabolism</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1v1DAQjRCIVm3_AAdkiQuXgD8SO7kgrVYUkFZqD-VsOc5k11USB09SqZz4G_y9_hJm2VJaDvhgW35v3szzy7JXgr8TXFXvsRBlXeVc1HlhilLm-ll2LHlR5lJJ-fzR_Sg7Q7zmtEpZF6J-mR0pocqqKtVxhiu_zMAS4JxcGGdGJyDSww0kBGRhmFxI0LLN1SULI5t3wHZhmqJ3hPRsvRJE3oY47tEhLgi0t9Ajix1b9d93EAZIdz9-ImsDgkM4zV50rkc4uz9Psq_nH6_Wn_PNxacv69Um9-Rozg0Y4M6Ure54weuK1742qhIGGtNWXnPjCt8J35SikVJ1xG688SUUheCd4eok-3DQnZZmgNbDSB57O6UwuHRrowv2KTKGnd3GG6u1ljWXJPD2XiDFbwt9kR0Ceuh7NwIZtVJqw6m1UER98w_1Oi5pJHt7llaCZtoLygPLp4iYoHsYRnC7j9UeYrUUq_0dq9VU9PqxjYeSPyESQR0ISNC4hfS3939kfwHW-a9u</recordid><startdate>20190729</startdate><enddate>20190729</enddate><creator>Wang, Ming</creator><creator>Ramasamy, Vijay Sankar</creator><creator>Samidurai, Manikandan</creator><creator>Jo, Jihoon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190729</creationdate><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><author>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>631/378/1689/1283</topic><topic>631/378/340</topic><topic>631/378/87</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>9/30</topic><topic>96/95</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - pathology</topic><topic>Dexamethasone</topic><topic>Disease Models, Animal</topic><topic>Glucocorticoid receptors</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Long-Term Potentiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Phosphorylation</topic><topic>Receptors, AMPA - metabolism</topic><topic>Restraint, Physical - psychology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress, Psychological - metabolism</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Ramasamy, Vijay Sankar</creatorcontrib><creatorcontrib>Samidurai, Manikandan</creatorcontrib><creatorcontrib>Jo, Jihoon</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ming</au><au>Ramasamy, Vijay Sankar</au><au>Samidurai, Manikandan</au><au>Jo, Jihoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10955</spage><epage>9</epage><pages>10955-9</pages><artnum>10955</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31358853</pmid><doi>10.1038/s41598-019-47452-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-07, Vol.9 (1), p.10955-9, Article 10955 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662902 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 631/378/1689/1283 631/378/340 631/378/87 64 64/110 64/60 82 82/29 9/30 96/95 Alzheimer Disease - metabolism Alzheimer's disease Animal models Animals CA1 Region, Hippocampal - metabolism CA1 Region, Hippocampal - pathology Dexamethasone Disease Models, Animal Glucocorticoid receptors Hippocampal plasticity Hippocampus Humanities and Social Sciences Ion channels Long-Term Potentiation Male Mice Mice, Inbred C57BL multidisciplinary Neuronal Plasticity Phosphorylation Receptors, AMPA - metabolism Restraint, Physical - psychology Science Science (multidisciplinary) Stress, Psychological - metabolism Synapses Synaptic plasticity Synaptic Transmission |
title | Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20restraint%20stress%20reverses%20impaired%20LTP%20in%20the%20hippocampal%20CA1%20region%20in%20mouse%20models%20of%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Ming&rft.date=2019-07-29&rft.volume=9&rft.issue=1&rft.spage=10955&rft.epage=9&rft.pages=10955-9&rft.artnum=10955&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-47452-6&rft_dat=%3Cproquest_pubme%3E2267022313%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266314102&rft_id=info:pmid/31358853&rfr_iscdi=true |