Loading…

Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease

Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protoco...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-07, Vol.9 (1), p.10955-9, Article 10955
Main Authors: Wang, Ming, Ramasamy, Vijay Sankar, Samidurai, Manikandan, Jo, Jihoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703
cites cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703
container_end_page 9
container_issue 1
container_start_page 10955
container_title Scientific reports
container_volume 9
creator Wang, Ming
Ramasamy, Vijay Sankar
Samidurai, Manikandan
Jo, Jihoon
description Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.
doi_str_mv 10.1038/s41598-019-47452-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2267022313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVm3_AAdkiQuXgD8SO7kgrVYUkFZqD-VsOc5k11USB09SqZz4G_y9_hJm2VJaDvhgW35v3szzy7JXgr8TXFXvsRBlXeVc1HlhilLm-ll2LHlR5lJJ-fzR_Sg7Q7zmtEpZF6J-mR0pocqqKtVxhiu_zMAS4JxcGGdGJyDSww0kBGRhmFxI0LLN1SULI5t3wHZhmqJ3hPRsvRJE3oY47tEhLgi0t9Ajix1b9d93EAZIdz9-ImsDgkM4zV50rkc4uz9Psq_nH6_Wn_PNxacv69Um9-Rozg0Y4M6Ure54weuK1742qhIGGtNWXnPjCt8J35SikVJ1xG688SUUheCd4eok-3DQnZZmgNbDSB57O6UwuHRrowv2KTKGnd3GG6u1ljWXJPD2XiDFbwt9kR0Ceuh7NwIZtVJqw6m1UER98w_1Oi5pJHt7llaCZtoLygPLp4iYoHsYRnC7j9UeYrUUq_0dq9VU9PqxjYeSPyESQR0ISNC4hfS3939kfwHW-a9u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266314102</pqid></control><display><type>article</type><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</creator><creatorcontrib>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</creatorcontrib><description>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-47452-6</identifier><identifier>PMID: 31358853</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 631/378/1689/1283 ; 631/378/340 ; 631/378/87 ; 64 ; 64/110 ; 64/60 ; 82 ; 82/29 ; 9/30 ; 96/95 ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Animal models ; Animals ; CA1 Region, Hippocampal - metabolism ; CA1 Region, Hippocampal - pathology ; Dexamethasone ; Disease Models, Animal ; Glucocorticoid receptors ; Hippocampal plasticity ; Hippocampus ; Humanities and Social Sciences ; Ion channels ; Long-Term Potentiation ; Male ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neuronal Plasticity ; Phosphorylation ; Receptors, AMPA - metabolism ; Restraint, Physical - psychology ; Science ; Science (multidisciplinary) ; Stress, Psychological - metabolism ; Synapses ; Synaptic plasticity ; Synaptic Transmission</subject><ispartof>Scientific reports, 2019-07, Vol.9 (1), p.10955-9, Article 10955</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</citedby><cites>FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2266314102/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2266314102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31358853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Ramasamy, Vijay Sankar</creatorcontrib><creatorcontrib>Samidurai, Manikandan</creatorcontrib><creatorcontrib>Jo, Jihoon</creatorcontrib><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</description><subject>13/1</subject><subject>631/378/1689/1283</subject><subject>631/378/340</subject><subject>631/378/87</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>82</subject><subject>82/29</subject><subject>9/30</subject><subject>96/95</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Animals</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>CA1 Region, Hippocampal - pathology</subject><subject>Dexamethasone</subject><subject>Disease Models, Animal</subject><subject>Glucocorticoid receptors</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Ion channels</subject><subject>Long-Term Potentiation</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity</subject><subject>Phosphorylation</subject><subject>Receptors, AMPA - metabolism</subject><subject>Restraint, Physical - psychology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress, Psychological - metabolism</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1v1DAQjRCIVm3_AAdkiQuXgD8SO7kgrVYUkFZqD-VsOc5k11USB09SqZz4G_y9_hJm2VJaDvhgW35v3szzy7JXgr8TXFXvsRBlXeVc1HlhilLm-ll2LHlR5lJJ-fzR_Sg7Q7zmtEpZF6J-mR0pocqqKtVxhiu_zMAS4JxcGGdGJyDSww0kBGRhmFxI0LLN1SULI5t3wHZhmqJ3hPRsvRJE3oY47tEhLgi0t9Ajix1b9d93EAZIdz9-ImsDgkM4zV50rkc4uz9Psq_nH6_Wn_PNxacv69Um9-Rozg0Y4M6Ure54weuK1742qhIGGtNWXnPjCt8J35SikVJ1xG688SUUheCd4eok-3DQnZZmgNbDSB57O6UwuHRrowv2KTKGnd3GG6u1ljWXJPD2XiDFbwt9kR0Ceuh7NwIZtVJqw6m1UER98w_1Oi5pJHt7llaCZtoLygPLp4iYoHsYRnC7j9UeYrUUq_0dq9VU9PqxjYeSPyESQR0ISNC4hfS3939kfwHW-a9u</recordid><startdate>20190729</startdate><enddate>20190729</enddate><creator>Wang, Ming</creator><creator>Ramasamy, Vijay Sankar</creator><creator>Samidurai, Manikandan</creator><creator>Jo, Jihoon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190729</creationdate><title>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</title><author>Wang, Ming ; Ramasamy, Vijay Sankar ; Samidurai, Manikandan ; Jo, Jihoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>631/378/1689/1283</topic><topic>631/378/340</topic><topic>631/378/87</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>82</topic><topic>82/29</topic><topic>9/30</topic><topic>96/95</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Animals</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>CA1 Region, Hippocampal - pathology</topic><topic>Dexamethasone</topic><topic>Disease Models, Animal</topic><topic>Glucocorticoid receptors</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Ion channels</topic><topic>Long-Term Potentiation</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity</topic><topic>Phosphorylation</topic><topic>Receptors, AMPA - metabolism</topic><topic>Restraint, Physical - psychology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress, Psychological - metabolism</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Ramasamy, Vijay Sankar</creatorcontrib><creatorcontrib>Samidurai, Manikandan</creatorcontrib><creatorcontrib>Jo, Jihoon</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ming</au><au>Ramasamy, Vijay Sankar</au><au>Samidurai, Manikandan</au><au>Jo, Jihoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-07-29</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>10955</spage><epage>9</epage><pages>10955-9</pages><artnum>10955</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31358853</pmid><doi>10.1038/s41598-019-47452-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2019-07, Vol.9 (1), p.10955-9, Article 10955
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662902
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
631/378/1689/1283
631/378/340
631/378/87
64
64/110
64/60
82
82/29
9/30
96/95
Alzheimer Disease - metabolism
Alzheimer's disease
Animal models
Animals
CA1 Region, Hippocampal - metabolism
CA1 Region, Hippocampal - pathology
Dexamethasone
Disease Models, Animal
Glucocorticoid receptors
Hippocampal plasticity
Hippocampus
Humanities and Social Sciences
Ion channels
Long-Term Potentiation
Male
Mice
Mice, Inbred C57BL
multidisciplinary
Neuronal Plasticity
Phosphorylation
Receptors, AMPA - metabolism
Restraint, Physical - psychology
Science
Science (multidisciplinary)
Stress, Psychological - metabolism
Synapses
Synaptic plasticity
Synaptic Transmission
title Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer’s disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20restraint%20stress%20reverses%20impaired%20LTP%20in%20the%20hippocampal%20CA1%20region%20in%20mouse%20models%20of%20Alzheimer%E2%80%99s%20disease&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Ming&rft.date=2019-07-29&rft.volume=9&rft.issue=1&rft.spage=10955&rft.epage=9&rft.pages=10955-9&rft.artnum=10955&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-47452-6&rft_dat=%3Cproquest_pubme%3E2267022313%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-7e7e0a75d6f0409809c973817eb7d8c607a4cf1cb51b223f7e0bc7c5e4410f703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266314102&rft_id=info:pmid/31358853&rfr_iscdi=true