Loading…

Spatiotemporal Distortions of Visual Perception at the Time of Saccades

Both space and time are grossly distorted during saccades. Here we show that the two distortions are strongly linked, and that both could be a consequence of the transient remapping mechanisms that affect visual neurons perisaccadically. We measured perisaccadic spatial and temporal distortions simu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2009-10, Vol.29 (42), p.13147-13157
Main Authors: Binda, Paola, Cicchini, Guido Marco, Burr, David C, Morrone, M. Concetta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Both space and time are grossly distorted during saccades. Here we show that the two distortions are strongly linked, and that both could be a consequence of the transient remapping mechanisms that affect visual neurons perisaccadically. We measured perisaccadic spatial and temporal distortions simultaneously by asking subjects to report both the perceived spatial location of a perisaccadic vertical bar (relative to a remembered ruler), and its perceived timing (relative to two sounds straddling the bar). During fixation and well before or after saccades, bars were localized veridically in space and in time. In different epochs of the perisaccadic interval, temporal perception was subject to different biases. At about the time of the saccadic onset, bars were temporally mislocalized 50-100 ms later than their actual presentation and spatially mislocalized toward the saccadic target. Importantly, the magnitude of the temporal distortions co-varied with the spatial localization bias and the two phenomena had similar dynamics. Within a brief period about 50 ms before saccadic onset, stimuli were perceived with shorter latencies than at other delays relative to saccadic onset, suggesting that the perceived passage of time transiently inverted its direction. Based on this result we could predict the inversion of perceived temporal order for two briefly flashed visual stimuli. We developed a model that simulates the perisaccadic transient change of neuronal receptive fields predicting well the reported temporal distortions. The key aspects of the model are the dynamics of the "remapped" activity and the use of decoder operators that are optimal during fixation, but are not updated perisaccadically.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3723-09.2009