Loading…

Cocaine Experience Controls Bidirectional Synaptic Plasticity in the Nucleus Accumbens

Plasticity of glutamatergic synapses is a fundamental mechanism through which experience changes neural function to impact future behavior. In animal models of addiction, glutamatergic signaling in the nucleus accumbens (NAc) exerts powerful control over drug-seeking behavior. However, little is kno...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2007-07, Vol.27 (30), p.7921-7928
Main Authors: Kourrich, Said, Rothwell, Patrick E, Klug, Jason R, Thomas, Mark J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasticity of glutamatergic synapses is a fundamental mechanism through which experience changes neural function to impact future behavior. In animal models of addiction, glutamatergic signaling in the nucleus accumbens (NAc) exerts powerful control over drug-seeking behavior. However, little is known about whether, how or when experience with drugs may trigger synaptic plasticity in this key nucleus. Using whole-cell synaptic physiology in NAc brain slices, we demonstrate that a progression of bidirectional changes in glutamatergic synaptic strength occurs after repeated in vivo exposure to cocaine. During a protracted drug-free period, NAc neurons from cocaine-experienced mice develop a robust potentiation of AMPAR-mediated synaptic transmission. However, a single re-exposure to cocaine during extended withdrawal becomes a potent stimulus for synaptic depression, abruptly reversing the initial potentiation. These enduring modifications in AMPAR-mediated responses and plasticity may provide a neural substrate for disrupted processing of drug-related stimuli in drug-experienced individuals.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.1859-07.2007