Loading…

Broad-Spectrum Efficacy across Cognitive Domains by α7 Nicotinic Acetylcholine Receptor Agonism Correlates with Activation of ERK1/2 and CREB Phosphorylation Pathways

The α7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel α7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyrida...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2007-09, Vol.27 (39), p.10578-10587
Main Authors: Bitner, Robert S., Bunnelle, William H., Anderson, David J., Briggs, Clark A., Buccafusco, Jerry, Curzon, Peter, Decker, Michael W., Frost, Jennifer M., Gronlien, Jens Halvard, Gubbins, Earl, Li, Jinhe, Malysz, John, Markosyan, Stella, Marsh, Kennan, Meyer, Michael D., Nikkel, Arthur L., Radek, Richard J., Robb, Holly M., Timmermann, Daniel, Sullivan, James P., Gopalakrishnan, Murali
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The α7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel α7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat ( K i = 10.8 n m ) and human ( K i = 16.7 n m ) α7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the α7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that α7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of α7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked α7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that α7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.2444-07.2007