Loading…

External Ions Are Coactivators of Kainate Receptors

The activation of ligand-gated ion channels is thought to depend solely on the binding of chemical neurotransmitters. In this study, we demonstrate that kainate (KA) ionotropic glutamate receptors (iGluRs) require not only the neurotransmitter L-glutamate (L-Glu) but also external sodium and chlorid...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2006-05, Vol.26 (21), p.5750-5755
Main Authors: Wong, Adrian Y. C, Fay, Anne-Marie L, Bowie, Derek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The activation of ligand-gated ion channels is thought to depend solely on the binding of chemical neurotransmitters. In this study, we demonstrate that kainate (KA) ionotropic glutamate receptors (iGluRs) require not only the neurotransmitter L-glutamate (L-Glu) but also external sodium and chloride ions for activation. Removal of external ions traps KA receptors (KARs) in a novel inactive state that binds L-Glu with picomolar affinity. Moreover, occupancy of KARs by L-Glu precludes external ion binding, demonstrating crosstalk between ligand- and ion-binding sites. AMPA iGluRs function normally in the absence of external ions, revealing that even closely related iGluR subfamilies operate by distinct gating mechanisms. This behavior is interchangeable via a single amino acid residue that operates as a molecular switch to confer AMPA receptor behavior onto KARs. Our findings identify a novel allosteric site that singles out KARs from all other ligand-gated ion channels.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.0301-06.2006