Loading…

Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover

The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-07, Vol.20 (14), p.3520
Main Authors: Kim, Donghwan, Kim, Ji-Hye, Kang, Young-Ho, Kim, Je Seong, Yun, Sung-Cheol, Kang, Sang-Wook, Song, Youngsup
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3
cites cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3
container_end_page
container_issue 14
container_start_page 3520
container_title International journal of molecular sciences
container_volume 20
creator Kim, Donghwan
Kim, Ji-Hye
Kang, Young-Ho
Kim, Je Seong
Yun, Sung-Cheol
Kang, Sang-Wook
Song, Youngsup
description The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of -a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.
doi_str_mv 10.3390/ijms20143520
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6678363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334213894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaD7aW89F0EsOcSJptF-XghPcNpAQaH0XWu2sLbMrbaVdB__3kUkanJxmhvnNYx6PkK-cXQJU7Mpu-igYl5AJ9oGccCnEjLG8-HjQH5PTGDeMCRBZ9YkcAwcBRcFOyPrvNAwBY7TeUd_S6-AfHZ03dvBmNyKdT6Mf1nq1o7f9EPwWI104DGm-x1HXvrOxp_WO_sHV1OnRuhW9t6M3a--aYHVHl1Nw6Sx8Jket7iJ-ealnZPlzsbz5Pbt7-HV7M7-bGcnFOOMllwWvuc5ZJWSRI2RGN9A2Iue5kVnGK95WNeO6YBLbkpUJLjVqg1iVCGfkx7PsMNU9NgbdGHSnhmB7HXbKa6vebpxdq5XfqjwvSsghCZy_CAT_b8I4qt5Gg12nHfopKgEgBYeykgn9_g7d-OQ2udtTkJVMViJRF8-UCT7GgO3rM5ypfYLqMMGEfzs08Ar_jwyeAIYSmQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333580492</pqid></control><display><type>article</type><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</creator><creatorcontrib>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</creatorcontrib><description>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of -a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20143520</identifier><identifier>PMID: 31323770</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adipocytes ; Adipocytes, Brown - cytology ; Adipocytes, Brown - metabolism ; Aging - genetics ; Aging - physiology ; Animals ; Autophagy ; Autophagy-Related Protein 7 - genetics ; Autophagy-Related Protein 7 - metabolism ; Biosynthesis ; Cyclooxygenase-2 ; Dehydrogenases ; Energy ; Energy balance ; Energy expenditure ; Energy metabolism ; Energy Metabolism - physiology ; Genes ; Glucose ; Homeostasis ; Insulin ; Lipids ; Metabolism ; Mice ; Mice, Mutant Strains ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitophagy - genetics ; Mitophagy - physiology ; mRNA ; Musculoskeletal system ; Phagocytosis ; Proteins ; Rodents</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (14), p.3520</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</citedby><cites>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</cites><orcidid>0000-0003-3183-6858 ; 0000-0001-5279-9027 ; 0000-0002-6268-5223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2333580492/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2333580492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31323770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghwan</creatorcontrib><creatorcontrib>Kim, Ji-Hye</creatorcontrib><creatorcontrib>Kang, Young-Ho</creatorcontrib><creatorcontrib>Kim, Je Seong</creatorcontrib><creatorcontrib>Yun, Sung-Cheol</creatorcontrib><creatorcontrib>Kang, Sang-Wook</creatorcontrib><creatorcontrib>Song, Youngsup</creatorcontrib><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of -a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</description><subject>Adipocytes</subject><subject>Adipocytes, Brown - cytology</subject><subject>Adipocytes, Brown - metabolism</subject><subject>Aging - genetics</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 7 - genetics</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Biosynthesis</subject><subject>Cyclooxygenase-2</subject><subject>Dehydrogenases</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Genes</subject><subject>Glucose</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitophagy - genetics</subject><subject>Mitophagy - physiology</subject><subject>mRNA</subject><subject>Musculoskeletal system</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Rodents</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1rGzEQxUVpaD7aW89F0EsOcSJptF-XghPcNpAQaH0XWu2sLbMrbaVdB__3kUkanJxmhvnNYx6PkK-cXQJU7Mpu-igYl5AJ9oGccCnEjLG8-HjQH5PTGDeMCRBZ9YkcAwcBRcFOyPrvNAwBY7TeUd_S6-AfHZ03dvBmNyKdT6Mf1nq1o7f9EPwWI104DGm-x1HXvrOxp_WO_sHV1OnRuhW9t6M3a--aYHVHl1Nw6Sx8Jket7iJ-ealnZPlzsbz5Pbt7-HV7M7-bGcnFOOMllwWvuc5ZJWSRI2RGN9A2Iue5kVnGK95WNeO6YBLbkpUJLjVqg1iVCGfkx7PsMNU9NgbdGHSnhmB7HXbKa6vebpxdq5XfqjwvSsghCZy_CAT_b8I4qt5Gg12nHfopKgEgBYeykgn9_g7d-OQ2udtTkJVMViJRF8-UCT7GgO3rM5ypfYLqMMGEfzs08Ar_jwyeAIYSmQA</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Kim, Donghwan</creator><creator>Kim, Ji-Hye</creator><creator>Kang, Young-Ho</creator><creator>Kim, Je Seong</creator><creator>Yun, Sung-Cheol</creator><creator>Kang, Sang-Wook</creator><creator>Song, Youngsup</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3183-6858</orcidid><orcidid>https://orcid.org/0000-0001-5279-9027</orcidid><orcidid>https://orcid.org/0000-0002-6268-5223</orcidid></search><sort><creationdate>20190718</creationdate><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><author>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipocytes</topic><topic>Adipocytes, Brown - cytology</topic><topic>Adipocytes, Brown - metabolism</topic><topic>Aging - genetics</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 7 - genetics</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Biosynthesis</topic><topic>Cyclooxygenase-2</topic><topic>Dehydrogenases</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Genes</topic><topic>Glucose</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitophagy - genetics</topic><topic>Mitophagy - physiology</topic><topic>mRNA</topic><topic>Musculoskeletal system</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghwan</creatorcontrib><creatorcontrib>Kim, Ji-Hye</creatorcontrib><creatorcontrib>Kang, Young-Ho</creatorcontrib><creatorcontrib>Kim, Je Seong</creatorcontrib><creatorcontrib>Yun, Sung-Cheol</creatorcontrib><creatorcontrib>Kang, Sang-Wook</creatorcontrib><creatorcontrib>Song, Youngsup</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghwan</au><au>Kim, Ji-Hye</au><au>Kang, Young-Ho</au><au>Kim, Je Seong</au><au>Yun, Sung-Cheol</au><au>Kang, Sang-Wook</au><au>Song, Youngsup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>20</volume><issue>14</issue><spage>3520</spage><pages>3520-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of -a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31323770</pmid><doi>10.3390/ijms20143520</doi><orcidid>https://orcid.org/0000-0003-3183-6858</orcidid><orcidid>https://orcid.org/0000-0001-5279-9027</orcidid><orcidid>https://orcid.org/0000-0002-6268-5223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2019-07, Vol.20 (14), p.3520
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6678363
source Publicly Available Content Database; PubMed Central
subjects Adipocytes
Adipocytes, Brown - cytology
Adipocytes, Brown - metabolism
Aging - genetics
Aging - physiology
Animals
Autophagy
Autophagy-Related Protein 7 - genetics
Autophagy-Related Protein 7 - metabolism
Biosynthesis
Cyclooxygenase-2
Dehydrogenases
Energy
Energy balance
Energy expenditure
Energy metabolism
Energy Metabolism - physiology
Genes
Glucose
Homeostasis
Insulin
Lipids
Metabolism
Mice
Mice, Mutant Strains
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Mitophagy - genetics
Mitophagy - physiology
mRNA
Musculoskeletal system
Phagocytosis
Proteins
Rodents
title Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Brown%20Adipocyte%20Autophagy%20Improves%20Energy%20Metabolism%20by%20Regulating%20Mitochondrial%20Turnover&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kim,%20Donghwan&rft.date=2019-07-18&rft.volume=20&rft.issue=14&rft.spage=3520&rft.pages=3520-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20143520&rft_dat=%3Cproquest_pubme%3E2334213894%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333580492&rft_id=info:pmid/31323770&rfr_iscdi=true