Loading…
Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover
The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was...
Saved in:
Published in: | International journal of molecular sciences 2019-07, Vol.20 (14), p.3520 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3 |
container_end_page | |
container_issue | 14 |
container_start_page | 3520 |
container_title | International journal of molecular sciences |
container_volume | 20 |
creator | Kim, Donghwan Kim, Ji-Hye Kang, Young-Ho Kim, Je Seong Yun, Sung-Cheol Kang, Sang-Wook Song, Youngsup |
description | The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of
-a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome. |
doi_str_mv | 10.3390/ijms20143520 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6678363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334213894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaD7aW89F0EsOcSJptF-XghPcNpAQaH0XWu2sLbMrbaVdB__3kUkanJxmhvnNYx6PkK-cXQJU7Mpu-igYl5AJ9oGccCnEjLG8-HjQH5PTGDeMCRBZ9YkcAwcBRcFOyPrvNAwBY7TeUd_S6-AfHZ03dvBmNyKdT6Mf1nq1o7f9EPwWI104DGm-x1HXvrOxp_WO_sHV1OnRuhW9t6M3a--aYHVHl1Nw6Sx8Jket7iJ-ealnZPlzsbz5Pbt7-HV7M7-bGcnFOOMllwWvuc5ZJWSRI2RGN9A2Iue5kVnGK95WNeO6YBLbkpUJLjVqg1iVCGfkx7PsMNU9NgbdGHSnhmB7HXbKa6vebpxdq5XfqjwvSsghCZy_CAT_b8I4qt5Gg12nHfopKgEgBYeykgn9_g7d-OQ2udtTkJVMViJRF8-UCT7GgO3rM5ypfYLqMMGEfzs08Ar_jwyeAIYSmQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333580492</pqid></control><display><type>article</type><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</creator><creatorcontrib>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</creatorcontrib><description>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of
-a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms20143520</identifier><identifier>PMID: 31323770</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adipocytes ; Adipocytes, Brown - cytology ; Adipocytes, Brown - metabolism ; Aging - genetics ; Aging - physiology ; Animals ; Autophagy ; Autophagy-Related Protein 7 - genetics ; Autophagy-Related Protein 7 - metabolism ; Biosynthesis ; Cyclooxygenase-2 ; Dehydrogenases ; Energy ; Energy balance ; Energy expenditure ; Energy metabolism ; Energy Metabolism - physiology ; Genes ; Glucose ; Homeostasis ; Insulin ; Lipids ; Metabolism ; Mice ; Mice, Mutant Strains ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitophagy - genetics ; Mitophagy - physiology ; mRNA ; Musculoskeletal system ; Phagocytosis ; Proteins ; Rodents</subject><ispartof>International journal of molecular sciences, 2019-07, Vol.20 (14), p.3520</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</citedby><cites>FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</cites><orcidid>0000-0003-3183-6858 ; 0000-0001-5279-9027 ; 0000-0002-6268-5223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2333580492/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2333580492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31323770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghwan</creatorcontrib><creatorcontrib>Kim, Ji-Hye</creatorcontrib><creatorcontrib>Kang, Young-Ho</creatorcontrib><creatorcontrib>Kim, Je Seong</creatorcontrib><creatorcontrib>Yun, Sung-Cheol</creatorcontrib><creatorcontrib>Kang, Sang-Wook</creatorcontrib><creatorcontrib>Song, Youngsup</creatorcontrib><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of
-a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</description><subject>Adipocytes</subject><subject>Adipocytes, Brown - cytology</subject><subject>Adipocytes, Brown - metabolism</subject><subject>Aging - genetics</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 7 - genetics</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Biosynthesis</subject><subject>Cyclooxygenase-2</subject><subject>Dehydrogenases</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Genes</subject><subject>Glucose</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitophagy - genetics</subject><subject>Mitophagy - physiology</subject><subject>mRNA</subject><subject>Musculoskeletal system</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Rodents</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1rGzEQxUVpaD7aW89F0EsOcSJptF-XghPcNpAQaH0XWu2sLbMrbaVdB__3kUkanJxmhvnNYx6PkK-cXQJU7Mpu-igYl5AJ9oGccCnEjLG8-HjQH5PTGDeMCRBZ9YkcAwcBRcFOyPrvNAwBY7TeUd_S6-AfHZ03dvBmNyKdT6Mf1nq1o7f9EPwWI104DGm-x1HXvrOxp_WO_sHV1OnRuhW9t6M3a--aYHVHl1Nw6Sx8Jket7iJ-ealnZPlzsbz5Pbt7-HV7M7-bGcnFOOMllwWvuc5ZJWSRI2RGN9A2Iue5kVnGK95WNeO6YBLbkpUJLjVqg1iVCGfkx7PsMNU9NgbdGHSnhmB7HXbKa6vebpxdq5XfqjwvSsghCZy_CAT_b8I4qt5Gg12nHfopKgEgBYeykgn9_g7d-OQ2udtTkJVMViJRF8-UCT7GgO3rM5ypfYLqMMGEfzs08Ar_jwyeAIYSmQA</recordid><startdate>20190718</startdate><enddate>20190718</enddate><creator>Kim, Donghwan</creator><creator>Kim, Ji-Hye</creator><creator>Kang, Young-Ho</creator><creator>Kim, Je Seong</creator><creator>Yun, Sung-Cheol</creator><creator>Kang, Sang-Wook</creator><creator>Song, Youngsup</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3183-6858</orcidid><orcidid>https://orcid.org/0000-0001-5279-9027</orcidid><orcidid>https://orcid.org/0000-0002-6268-5223</orcidid></search><sort><creationdate>20190718</creationdate><title>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</title><author>Kim, Donghwan ; Kim, Ji-Hye ; Kang, Young-Ho ; Kim, Je Seong ; Yun, Sung-Cheol ; Kang, Sang-Wook ; Song, Youngsup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipocytes</topic><topic>Adipocytes, Brown - cytology</topic><topic>Adipocytes, Brown - metabolism</topic><topic>Aging - genetics</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 7 - genetics</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Biosynthesis</topic><topic>Cyclooxygenase-2</topic><topic>Dehydrogenases</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Genes</topic><topic>Glucose</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitophagy - genetics</topic><topic>Mitophagy - physiology</topic><topic>mRNA</topic><topic>Musculoskeletal system</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghwan</creatorcontrib><creatorcontrib>Kim, Ji-Hye</creatorcontrib><creatorcontrib>Kang, Young-Ho</creatorcontrib><creatorcontrib>Kim, Je Seong</creatorcontrib><creatorcontrib>Yun, Sung-Cheol</creatorcontrib><creatorcontrib>Kang, Sang-Wook</creatorcontrib><creatorcontrib>Song, Youngsup</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghwan</au><au>Kim, Ji-Hye</au><au>Kang, Young-Ho</au><au>Kim, Je Seong</au><au>Yun, Sung-Cheol</au><au>Kang, Sang-Wook</au><au>Song, Youngsup</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2019-07-18</date><risdate>2019</risdate><volume>20</volume><issue>14</issue><spage>3520</spage><pages>3520-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of
-a gene essential for autophagosome generation-maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31323770</pmid><doi>10.3390/ijms20143520</doi><orcidid>https://orcid.org/0000-0003-3183-6858</orcidid><orcidid>https://orcid.org/0000-0001-5279-9027</orcidid><orcidid>https://orcid.org/0000-0002-6268-5223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2019-07, Vol.20 (14), p.3520 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6678363 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adipocytes Adipocytes, Brown - cytology Adipocytes, Brown - metabolism Aging - genetics Aging - physiology Animals Autophagy Autophagy-Related Protein 7 - genetics Autophagy-Related Protein 7 - metabolism Biosynthesis Cyclooxygenase-2 Dehydrogenases Energy Energy balance Energy expenditure Energy metabolism Energy Metabolism - physiology Genes Glucose Homeostasis Insulin Lipids Metabolism Mice Mice, Mutant Strains Mitochondria Mitochondria - metabolism Mitochondrial DNA Mitophagy - genetics Mitophagy - physiology mRNA Musculoskeletal system Phagocytosis Proteins Rodents |
title | Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Brown%20Adipocyte%20Autophagy%20Improves%20Energy%20Metabolism%20by%20Regulating%20Mitochondrial%20Turnover&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kim,%20Donghwan&rft.date=2019-07-18&rft.volume=20&rft.issue=14&rft.spage=3520&rft.pages=3520-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms20143520&rft_dat=%3Cproquest_pubme%3E2334213894%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-181471b1a6092476e35cad3fd2616c455191f9b01a704ef8081b18aeacee98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333580492&rft_id=info:pmid/31323770&rfr_iscdi=true |