Loading…
Field testing of a lightweight, inexpensive, and customisable 3D-printed mosquito light trap in the UK
Mosquito surveillance is a fundamental component of planning and evaluating vector control programmes. However, logistical and cost barriers can hinder the implementation of surveillance, particularly in vector-borne disease-endemic areas and in outbreak scenarios in remote areas where the need is o...
Saved in:
Published in: | Scientific reports 2019-08, Vol.9 (1), p.11412-8, Article 11412 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mosquito surveillance is a fundamental component of planning and evaluating vector control programmes. However, logistical and cost barriers can hinder the implementation of surveillance, particularly in vector-borne disease-endemic areas and in outbreak scenarios in remote areas where the need is often most urgent. The increasing availability and reduced cost of 3D printing technology offers an innovative approach to overcoming these challenges. In this study, we assessed the field performance of a novel, lightweight 3D-printed mosquito light trap baited with carbon dioxide (CO
2
) in comparison with two gold-standard traps, the Centers for Disease Control and Prevention (CDC) light trap baited with CO
2
, and the BG Sentinel 2 trap with BG-Lure and CO
2
. Traps were run for 12 nights in a Latin square design at Rainham Marshes, Essex, UK in September 2018. The 3D-printed trap showed equivalent catch rates to the two commercially available traps. The 3D-printed trap designs are distributed free of charge in this article with the aim of assisting entomological field studies across the world. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-47511-y |