Loading…

Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis

The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-08, Vol.9 (1), p.11421-13, Article 11421
Main Authors: Welling, Matthew T., Liu, Lei, Raymond, Carolyn A., Kretzschmar, Tobias, Ansari, Omid, King, Graham J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cannabinoid alkyl side-chain represents an important pharmacophore, where genetic targeting of alkyl homologs has the potential to provide enhanced forms of Cannabis for biopharmaceutical manufacture. Delta(9)-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) synthase genes govern dicyclic (CBDA) and tricyclic (THCA) cannabinoid composition. However, the inheritance of alkyl side-chain length has not been resolved, and few studies have investigated the contributions and interactions between cannabinoid synthesis pathway loci. To examine the inheritance of chemical phenotype (chemotype), THCAS and CBDAS genotypes were scored and alkyl cannabinoid segregation analysed in 210 F 2 progeny derived from a cross between two Cannabis chemotypes divergent for alkyl and cyclic cannabinoids. Inheritance patterns of F 2 progeny were non-Gaussian and deviated from Mendelian expectations. However, discrete alkyl cannabinoid segregation patterns consistent with digenic as well as epistatic modes of inheritance were observed among F 2 THCAS and CBDAS genotypes. These results suggest linkage between cannabinoid pathway loci and highlight the need for further detailed characterisation of cannabinoid inheritance to facilitate metabolic engineering of chemically elite germplasm.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-47812-2