Loading…

Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa

Detecting changes in climate is a prerequisite for a better understanding of the climate and developing adaptation and mitigation measures at a regional and local scale. In this study long-term trends in rainfall and maximum and minimum temperature (T-max and T-min) were analysed on seasonal and ann...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-08, Vol.9 (1), p.11376-9, Article 11376
Main Authors: Gebrechorkos, Solomon H., Hülsmann, Stephan, Bernhofer, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting changes in climate is a prerequisite for a better understanding of the climate and developing adaptation and mitigation measures at a regional and local scale. In this study long-term trends in rainfall and maximum and minimum temperature (T-max and T-min) were analysed on seasonal and annual time scales for East Africa. High resolution gridded rainfall (1981–2016) and temperature (1979–2010) data from international databases like the Climate Hazards Group are used. Long-term seasonal trend analysis shows a non-significant (except for small areas), decreasing (increasing) trend in rainfall in eastern (western) parts of Ethiopia and Kenya and a decreasing trend in large parts of Tanzania during the long rainy season. On the other hand, a non-significant increasing trend in large parts of the region is observed during the short rain season. With regard to annual trends, results largely confirm seasonal analyses: only a few significant trends in rainfall, but significant increasing trends in T-max (up to 1.9 °C) and T-min (up to 1.2 °C) for virtually the whole region. Our results demonstrate the need and added value of analysing climate trends based on data with high spatial resolution allowing sustainable adaptation measures at local scales.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-47933-8