Loading…

A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions

Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polye...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2019-08, Vol.116 (32), p.15784-15791
Main Authors: Rogers, Bradley A., Rembert, Kelvin B., Poyton, Matthew F., Okur, Halil I., Kale, Amanda R., Yang, Tinglu, Zhang, Jifeng, Cremer, Paul S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3
cites cdi_FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3
container_end_page 15791
container_issue 32
container_start_page 15784
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 116
creator Rogers, Bradley A.
Rembert, Kelvin B.
Poyton, Matthew F.
Okur, Halil I.
Kale, Amanda R.
Yang, Tinglu
Zhang, Jifeng
Cremer, Paul S.
description Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph, ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta, and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel, the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solidlike gel structure, which can form below either the metastable or the spinodal region of the phase diagram.
doi_str_mv 10.1073/pnas.1900886116
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26848426</jstor_id><sourcerecordid>26848426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3</originalsourceid><addsrcrecordid>eNpdkUmP1DAQhS0EYpqGMyeQJS5cMlNe4uWCNBqxSSNxgSuW4zi0W4kd7IRR_3vc9NAspzq8r55e1UPoOYFLApJdzdGWS6IBlBKEiAdoQ0CTRnAND9EGgMpGccov0JNS9gCgWwWP0QUjjEkh5QZ9vcZl8fNdKB5P3u1sDGXCQ8rYfl99Wgte7lIz72zVy6Giv8TJLiFFHCJ2KTofl2wX32Mbl9Cl_oBLGtcjUZ6iR4Mdi392P7foy7u3n28-NLef3n-8ub5tHOdsaXjfWzoIR6yvA1TLOtq2hLV86GQ3aKWhhd5rrTlrWwbcCck7rryVTnrh2Ba9OfnOazf5_hRpNHMOk80Hk2ww_yox7My39MMIUZ9HWTV4fW-QUz28LGYKxflxtPH4BUOpYIxIBbqir_5D92nNsZ5XKUkpYapG36KrE-VyKiX74RyGgDl2Z47dmT_d1Y2Xf99w5n-XVYEXJ2BflpTPOhWK15IF-wl9FaD2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272213851</pqid></control><display><type>article</type><title>A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Rogers, Bradley A. ; Rembert, Kelvin B. ; Poyton, Matthew F. ; Okur, Halil I. ; Kale, Amanda R. ; Yang, Tinglu ; Zhang, Jifeng ; Cremer, Paul S.</creator><creatorcontrib>Rogers, Bradley A. ; Rembert, Kelvin B. ; Poyton, Matthew F. ; Okur, Halil I. ; Kale, Amanda R. ; Yang, Tinglu ; Zhang, Jifeng ; Cremer, Paul S.</creatorcontrib><description>Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph, ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta, and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel, the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solidlike gel structure, which can form below either the metastable or the spinodal region of the phase diagram.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1900886116</identifier><identifier>PMID: 31337677</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation energy ; Antibodies, Monoclonal - analysis ; Aqueous solutions ; Binary systems ; Coalescence ; Coalescing ; Colloids - chemistry ; Droplets ; Gelation ; Kinetics ; Liquid phases ; Metastable region ; Monoclonal antibodies ; Phase diagrams ; Phase separation ; Physical Sciences ; PNAS Plus ; Polyethylene glycol ; Proteins ; Rate constants ; Scattering, Radiation ; Solutions ; Temperature ; Temperature dependence ; Temperature effects ; Temperature gradients ; Time Factors ; Time-Lapse Imaging ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.15784-15791</ispartof><rights>Copyright National Academy of Sciences Aug 6, 2019</rights><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3</citedby><cites>FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26848426$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26848426$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31337677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rogers, Bradley A.</creatorcontrib><creatorcontrib>Rembert, Kelvin B.</creatorcontrib><creatorcontrib>Poyton, Matthew F.</creatorcontrib><creatorcontrib>Okur, Halil I.</creatorcontrib><creatorcontrib>Kale, Amanda R.</creatorcontrib><creatorcontrib>Yang, Tinglu</creatorcontrib><creatorcontrib>Zhang, Jifeng</creatorcontrib><creatorcontrib>Cremer, Paul S.</creatorcontrib><title>A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph, ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta, and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel, the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solidlike gel structure, which can form below either the metastable or the spinodal region of the phase diagram.</description><subject>Activation energy</subject><subject>Antibodies, Monoclonal - analysis</subject><subject>Aqueous solutions</subject><subject>Binary systems</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Colloids - chemistry</subject><subject>Droplets</subject><subject>Gelation</subject><subject>Kinetics</subject><subject>Liquid phases</subject><subject>Metastable region</subject><subject>Monoclonal antibodies</subject><subject>Phase diagrams</subject><subject>Phase separation</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Polyethylene glycol</subject><subject>Proteins</subject><subject>Rate constants</subject><subject>Scattering, Radiation</subject><subject>Solutions</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Time Factors</subject><subject>Time-Lapse Imaging</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkUmP1DAQhS0EYpqGMyeQJS5cMlNe4uWCNBqxSSNxgSuW4zi0W4kd7IRR_3vc9NAspzq8r55e1UPoOYFLApJdzdGWS6IBlBKEiAdoQ0CTRnAND9EGgMpGccov0JNS9gCgWwWP0QUjjEkh5QZ9vcZl8fNdKB5P3u1sDGXCQ8rYfl99Wgte7lIz72zVy6Giv8TJLiFFHCJ2KTofl2wX32Mbl9Cl_oBLGtcjUZ6iR4Mdi392P7foy7u3n28-NLef3n-8ub5tHOdsaXjfWzoIR6yvA1TLOtq2hLV86GQ3aKWhhd5rrTlrWwbcCck7rryVTnrh2Ba9OfnOazf5_hRpNHMOk80Hk2ww_yox7My39MMIUZ9HWTV4fW-QUz28LGYKxflxtPH4BUOpYIxIBbqir_5D92nNsZ5XKUkpYapG36KrE-VyKiX74RyGgDl2Z47dmT_d1Y2Xf99w5n-XVYEXJ2BflpTPOhWK15IF-wl9FaD2</recordid><startdate>20190806</startdate><enddate>20190806</enddate><creator>Rogers, Bradley A.</creator><creator>Rembert, Kelvin B.</creator><creator>Poyton, Matthew F.</creator><creator>Okur, Halil I.</creator><creator>Kale, Amanda R.</creator><creator>Yang, Tinglu</creator><creator>Zhang, Jifeng</creator><creator>Cremer, Paul S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190806</creationdate><title>A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions</title><author>Rogers, Bradley A. ; Rembert, Kelvin B. ; Poyton, Matthew F. ; Okur, Halil I. ; Kale, Amanda R. ; Yang, Tinglu ; Zhang, Jifeng ; Cremer, Paul S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Antibodies, Monoclonal - analysis</topic><topic>Aqueous solutions</topic><topic>Binary systems</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Colloids - chemistry</topic><topic>Droplets</topic><topic>Gelation</topic><topic>Kinetics</topic><topic>Liquid phases</topic><topic>Metastable region</topic><topic>Monoclonal antibodies</topic><topic>Phase diagrams</topic><topic>Phase separation</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Polyethylene glycol</topic><topic>Proteins</topic><topic>Rate constants</topic><topic>Scattering, Radiation</topic><topic>Solutions</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Time Factors</topic><topic>Time-Lapse Imaging</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, Bradley A.</creatorcontrib><creatorcontrib>Rembert, Kelvin B.</creatorcontrib><creatorcontrib>Poyton, Matthew F.</creatorcontrib><creatorcontrib>Okur, Halil I.</creatorcontrib><creatorcontrib>Kale, Amanda R.</creatorcontrib><creatorcontrib>Yang, Tinglu</creatorcontrib><creatorcontrib>Zhang, Jifeng</creatorcontrib><creatorcontrib>Cremer, Paul S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, Bradley A.</au><au>Rembert, Kelvin B.</au><au>Poyton, Matthew F.</au><au>Okur, Halil I.</au><au>Kale, Amanda R.</au><au>Yang, Tinglu</au><au>Zhang, Jifeng</au><au>Cremer, Paul S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2019-08-06</date><risdate>2019</risdate><volume>116</volume><issue>32</issue><spage>15784</spage><epage>15791</epage><pages>15784-15791</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid–liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph, ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta, and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel, the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solidlike gel structure, which can form below either the metastable or the spinodal region of the phase diagram.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>31337677</pmid><doi>10.1073/pnas.1900886116</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (32), p.15784-15791
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6690023
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Activation energy
Antibodies, Monoclonal - analysis
Aqueous solutions
Binary systems
Coalescence
Coalescing
Colloids - chemistry
Droplets
Gelation
Kinetics
Liquid phases
Metastable region
Monoclonal antibodies
Phase diagrams
Phase separation
Physical Sciences
PNAS Plus
Polyethylene glycol
Proteins
Rate constants
Scattering, Radiation
Solutions
Temperature
Temperature dependence
Temperature effects
Temperature gradients
Time Factors
Time-Lapse Imaging
Water - chemistry
title A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stepwise%20mechanism%20for%20aqueous%20two-phase%20system%20formation%20in%20concentrated%20antibody%20solutions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rogers,%20Bradley%20A.&rft.date=2019-08-06&rft.volume=116&rft.issue=32&rft.spage=15784&rft.epage=15791&rft.pages=15784-15791&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1900886116&rft_dat=%3Cjstor_pubme%3E26848426%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-4dda2f6c1ae2f60853b2551354fb7bf989050de9994355304c674b48ea7c7e6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272213851&rft_id=info:pmid/31337677&rft_jstor_id=26848426&rfr_iscdi=true