Loading…
Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)
Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion. Th...
Saved in:
Published in: | Magnetic resonance imaging 2019-10, Vol.62, p.228-241 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3 |
container_end_page | 241 |
container_issue | |
container_start_page | 228 |
container_title | Magnetic resonance imaging |
container_volume | 62 |
creator | Elsaid, Nahla M.H. Prince, Jerry L. Roys, Steven Gullapalli, Rao P. Zhuo, Jiachen |
description | Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion.
This article describes a novel method to return a metric of subject motion, computed using an image texture analysis of the DW phase image. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally fast and reliably detects subject motion from diffusion-weighted images. A threshold of the motion metric was identified to remove motion-corrupted slices, and the effect of removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts.
Using a motion-metric threshold to remove the motion-corrupted slices results in superior fiber tracts and fractional anisotropy maps. When further compared to a state-of-the-art magnitude-based motion correction method, PITA-MDD was able to detect comparable corrupted slices in a more computationally efficient manner.
In this study, we evaluated the use of DW phase images to detect motion corruption. The proposed method can be a robust and fast alternative for automatic motion detection in the brain with multiple applications to inform prospective motion correction or as real-time feedback for data quality control during scanning, as well as after data is already acquired. |
doi_str_mv | 10.1016/j.mri.2019.07.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X18303242</els_id><sourcerecordid>2261274044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3</originalsourceid><addsrcrecordid>eNp9kVFr2zAUhcVYWbNuP2Avw4_tg13JkmyLwSA0WxtoWCkp7E3I8lWiYFupZJf2309p2rC-9EXSRd8993IOQt8Izggmxfkm67zNckxEhssMY_EBTUhV0pRXgn1EE1xSnJY5_3uMPoewwRjznPJP6JgSSgTJywla3KxVgGTeqRUkS3gcRg_JtFftU7AhMc4nCzdY1yczGEA_v2wsrDFj2BWL23lyejNfTtPFbHb2BR0Z1Qb4-nKfoLvfv5YXV-n1n8v5xfQ61YyTIa05BaiNbgBEFTcxdcFy0VRAKy0MlNpwpiuo49HwhlUFo0RHXNdMqAoaeoJ-7nW3Y91Bo6EfvGrl1ttO-SfplJVvf3q7liv3IItClITjKHD6IuDd_QhhkJ0NGtpW9eDGIPO8iPYwzFhEyR7V3oXgwRzGECx3MciNjDHIXQwSlzLGEHu-_7_foePV9wj82AMQXXqw4GXQFnoNjfXRZtk4-478Pz1vmWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261274044</pqid></control><display><type>article</type><title>Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)</title><source>ScienceDirect Freedom Collection</source><creator>Elsaid, Nahla M.H. ; Prince, Jerry L. ; Roys, Steven ; Gullapalli, Rao P. ; Zhuo, Jiachen</creator><creatorcontrib>Elsaid, Nahla M.H. ; Prince, Jerry L. ; Roys, Steven ; Gullapalli, Rao P. ; Zhuo, Jiachen</creatorcontrib><description>Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion.
This article describes a novel method to return a metric of subject motion, computed using an image texture analysis of the DW phase image. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally fast and reliably detects subject motion from diffusion-weighted images. A threshold of the motion metric was identified to remove motion-corrupted slices, and the effect of removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts.
Using a motion-metric threshold to remove the motion-corrupted slices results in superior fiber tracts and fractional anisotropy maps. When further compared to a state-of-the-art magnitude-based motion correction method, PITA-MDD was able to detect comparable corrupted slices in a more computationally efficient manner.
In this study, we evaluated the use of DW phase images to detect motion corruption. The proposed method can be a robust and fast alternative for automatic motion detection in the brain with multiple applications to inform prospective motion correction or as real-time feedback for data quality control during scanning, as well as after data is already acquired.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2019.07.009</identifier><identifier>PMID: 31319127</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Anisotropy ; Brain - diagnostic imaging ; Diffusion Magnetic Resonance Imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Motion ; Prospective Studies ; Reproducibility of Results</subject><ispartof>Magnetic resonance imaging, 2019-10, Vol.62, p.228-241</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3</citedby><cites>FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31319127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elsaid, Nahla M.H.</creatorcontrib><creatorcontrib>Prince, Jerry L.</creatorcontrib><creatorcontrib>Roys, Steven</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><title>Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion.
This article describes a novel method to return a metric of subject motion, computed using an image texture analysis of the DW phase image. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally fast and reliably detects subject motion from diffusion-weighted images. A threshold of the motion metric was identified to remove motion-corrupted slices, and the effect of removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts.
Using a motion-metric threshold to remove the motion-corrupted slices results in superior fiber tracts and fractional anisotropy maps. When further compared to a state-of-the-art magnitude-based motion correction method, PITA-MDD was able to detect comparable corrupted slices in a more computationally efficient manner.
In this study, we evaluated the use of DW phase images to detect motion corruption. The proposed method can be a robust and fast alternative for automatic motion detection in the brain with multiple applications to inform prospective motion correction or as real-time feedback for data quality control during scanning, as well as after data is already acquired.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Motion</subject><subject>Prospective Studies</subject><subject>Reproducibility of Results</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kVFr2zAUhcVYWbNuP2Avw4_tg13JkmyLwSA0WxtoWCkp7E3I8lWiYFupZJf2309p2rC-9EXSRd8993IOQt8Izggmxfkm67zNckxEhssMY_EBTUhV0pRXgn1EE1xSnJY5_3uMPoewwRjznPJP6JgSSgTJywla3KxVgGTeqRUkS3gcRg_JtFftU7AhMc4nCzdY1yczGEA_v2wsrDFj2BWL23lyejNfTtPFbHb2BR0Z1Qb4-nKfoLvfv5YXV-n1n8v5xfQ61YyTIa05BaiNbgBEFTcxdcFy0VRAKy0MlNpwpiuo49HwhlUFo0RHXNdMqAoaeoJ-7nW3Y91Bo6EfvGrl1ttO-SfplJVvf3q7liv3IItClITjKHD6IuDd_QhhkJ0NGtpW9eDGIPO8iPYwzFhEyR7V3oXgwRzGECx3MciNjDHIXQwSlzLGEHu-_7_foePV9wj82AMQXXqw4GXQFnoNjfXRZtk4-478Pz1vmWs</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Elsaid, Nahla M.H.</creator><creator>Prince, Jerry L.</creator><creator>Roys, Steven</creator><creator>Gullapalli, Rao P.</creator><creator>Zhuo, Jiachen</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191001</creationdate><title>Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)</title><author>Elsaid, Nahla M.H. ; Prince, Jerry L. ; Roys, Steven ; Gullapalli, Rao P. ; Zhuo, Jiachen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Motion</topic><topic>Prospective Studies</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsaid, Nahla M.H.</creatorcontrib><creatorcontrib>Prince, Jerry L.</creatorcontrib><creatorcontrib>Roys, Steven</creatorcontrib><creatorcontrib>Gullapalli, Rao P.</creatorcontrib><creatorcontrib>Zhuo, Jiachen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elsaid, Nahla M.H.</au><au>Prince, Jerry L.</au><au>Roys, Steven</au><au>Gullapalli, Rao P.</au><au>Zhuo, Jiachen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD)</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>62</volume><spage>228</spage><epage>241</epage><pages>228-241</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Pronounced spin phase artifacts appear in diffusion-weighted imaging (DWI) with only minor subject motion. While DWI data corruption is often identified as signal drop out in diffusion-weighted (DW) magnitude images, DW phase images may have higher sensitivity for detecting subtle subject motion.
This article describes a novel method to return a metric of subject motion, computed using an image texture analysis of the DW phase image. This Phase Image Texture Analysis for Motion Detection in dMRI (PITA-MDD) method is computationally fast and reliably detects subject motion from diffusion-weighted images. A threshold of the motion metric was identified to remove motion-corrupted slices, and the effect of removing corrupted slices was assessed on the reconstructed FA maps and fiber tracts.
Using a motion-metric threshold to remove the motion-corrupted slices results in superior fiber tracts and fractional anisotropy maps. When further compared to a state-of-the-art magnitude-based motion correction method, PITA-MDD was able to detect comparable corrupted slices in a more computationally efficient manner.
In this study, we evaluated the use of DW phase images to detect motion corruption. The proposed method can be a robust and fast alternative for automatic motion detection in the brain with multiple applications to inform prospective motion correction or as real-time feedback for data quality control during scanning, as well as after data is already acquired.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>31319127</pmid><doi>10.1016/j.mri.2019.07.009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2019-10, Vol.62, p.228-241 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697150 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Anisotropy Brain - diagnostic imaging Diffusion Magnetic Resonance Imaging Humans Image Processing, Computer-Assisted - methods Motion Prospective Studies Reproducibility of Results |
title | Phase Image Texture Analysis for Motion Detection in Diffusion MRI (PITA-MDD) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T21%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Image%20Texture%20Analysis%20for%20Motion%20Detection%20in%20Diffusion%20MRI%20(PITA-MDD)&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Elsaid,%20Nahla%20M.H.&rft.date=2019-10-01&rft.volume=62&rft.spage=228&rft.epage=241&rft.pages=228-241&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2019.07.009&rft_dat=%3Cproquest_pubme%3E2261274044%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-b53eebfcdee98319fb6429d8e38c9fe7cf54c8eb4c8d5d486431cfcdcb49a8ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2261274044&rft_id=info:pmid/31319127&rfr_iscdi=true |