Loading…

Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging

Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) pos...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2019-08, Vol.25 (16), p.5027-5037
Main Authors: Bowen, Stephen R, Hippe, Daniel S, Chaovalitwongse, W Art, Duan, Chunyan, Thammasorn, Phawis, Liu, Xiao, Miyaoka, Robert S, Vesselle, Hubert J, Kinahan, Paul E, Rengan, Ramesh, Zeng, Jing
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73
cites cdi_FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73
container_end_page 5037
container_issue 16
container_start_page 5027
container_title Clinical cancer research
container_volume 25
creator Bowen, Stephen R
Hippe, Daniel S
Chaovalitwongse, W Art
Duan, Chunyan
Thammasorn, Phawis
Liu, Xiao
Miyaoka, Robert S
Vesselle, Hubert J
Kinahan, Paul E
Rengan, Ramesh
Zeng, Jing
description Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. Twenty-five patients with locally advanced non-small cell lung cancer, enrolled on the FLARE-RT phase II trial (NCT02773238), underwent FDG PET/CT imaging prior to (PETpre) and during week 3 (PETmid) of concurrent chemoradiotherapy. Voxel Forecast was designed to predict tumor voxel standardized uptake value (SUV) on PETmid from baseline patient-level and voxel-level covariates using a custom generalized least squares (GLS) algorithm. Matérn covariance matrices were fit to patient- specific empirical variograms of distance-dependent intervoxel correlation. Regression coefficients from variogram-based weights and corresponding standard errors were estimated using the jackknife technique. The framework was validated using statistical simulations of known spatially variant tumor response. Mean absolute prediction errors (MAEs) of Voxel Forecast models were calculated under leave-one-patient-out cross-validation. Patient-level forecasts resulted in tumor voxel SUV MAE on PETmid of 1.5 g/mL while combined patient- and voxel-level forecasts achieved lower MAE of 1.0 g/mL ( < 0.0001). PETpre voxel SUV was the most important predictor of PETmid voxel SUV. Patients with a greater percentage of under-responding tumor voxels were classified as PETmid nonresponders ( = 0.030) with worse overall survival prognosis ( < 0.001). Voxel Forecast multiscale regression provides a statistical framework to predict voxel-wise response patterns during therapy. Voxel Forecast can be extended to predict spatially variant response on multimodal quantitative imaging and may eventually guide optimized spatial-temporal dose distributions for precision cancer therapy.
doi_str_mv 10.1158/1078-0432.CCR-18-3908
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232475635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73</originalsourceid><addsrcrecordid>eNpVkc1u1TAQhSNERX_gEUBesklrO7GdsEBCES2VblUopVtr4jipka8dbKfqfZS-LY76I1h55Dnnm7FPUbwn-JgQ1pwQLJoS1xU97rqrkjRl1eLmVXFAGBNlRTl7netnzX5xGONvjElNcP2m2K8IqSnD4qB4uPH32qJTH7SCmNDoA_qeaxONd-jSKW_9tPu03g1GJeMm9HOGZMDaHbqBYMAlBG5AF4tNJiqwGnXglA7o-lYHmHfoSsfZu6hRBm68m0xaBuPAoh9LNpuUaXcaXXir1WIhoPMtTHnO22JvBBv1u6fzqPh1-vW6-1ZuLs_Ouy-bUtWEpJINtFEYGj1SRpTqW9yvzx6prgUGLvqWY0rqsR1103M1gGorzIVggnI8KlEdFZ8fufPSb_WgtEsBrJyD2ULYSQ9G_t9x5lZO_k5y3grW8Az4-AQI_s-iY5Lb_BHaWnDaL1FSWtFaMF6xLGWPUhV8jEGPL2MIlmusct1drpHJHKskjVxjzb4P_-744nrOsfoLfa6ivg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232475635</pqid></control><display><type>article</type><title>Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging</title><source>Freely Accessible Journals</source><creator>Bowen, Stephen R ; Hippe, Daniel S ; Chaovalitwongse, W Art ; Duan, Chunyan ; Thammasorn, Phawis ; Liu, Xiao ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing</creator><creatorcontrib>Bowen, Stephen R ; Hippe, Daniel S ; Chaovalitwongse, W Art ; Duan, Chunyan ; Thammasorn, Phawis ; Liu, Xiao ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing</creatorcontrib><description>Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. Twenty-five patients with locally advanced non-small cell lung cancer, enrolled on the FLARE-RT phase II trial (NCT02773238), underwent FDG PET/CT imaging prior to (PETpre) and during week 3 (PETmid) of concurrent chemoradiotherapy. Voxel Forecast was designed to predict tumor voxel standardized uptake value (SUV) on PETmid from baseline patient-level and voxel-level covariates using a custom generalized least squares (GLS) algorithm. Matérn covariance matrices were fit to patient- specific empirical variograms of distance-dependent intervoxel correlation. Regression coefficients from variogram-based weights and corresponding standard errors were estimated using the jackknife technique. The framework was validated using statistical simulations of known spatially variant tumor response. Mean absolute prediction errors (MAEs) of Voxel Forecast models were calculated under leave-one-patient-out cross-validation. Patient-level forecasts resulted in tumor voxel SUV MAE on PETmid of 1.5 g/mL while combined patient- and voxel-level forecasts achieved lower MAE of 1.0 g/mL ( &lt; 0.0001). PETpre voxel SUV was the most important predictor of PETmid voxel SUV. Patients with a greater percentage of under-responding tumor voxels were classified as PETmid nonresponders ( = 0.030) with worse overall survival prognosis ( &lt; 0.001). Voxel Forecast multiscale regression provides a statistical framework to predict voxel-wise response patterns during therapy. Voxel Forecast can be extended to predict spatially variant response on multimodal quantitative imaging and may eventually guide optimized spatial-temporal dose distributions for precision cancer therapy.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-18-3908</identifier><identifier>PMID: 31142507</identifier><language>eng</language><publisher>United States</publisher><ispartof>Clinical cancer research, 2019-08, Vol.25 (16), p.5027-5037</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73</citedby><cites>FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31142507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowen, Stephen R</creatorcontrib><creatorcontrib>Hippe, Daniel S</creatorcontrib><creatorcontrib>Chaovalitwongse, W Art</creatorcontrib><creatorcontrib>Duan, Chunyan</creatorcontrib><creatorcontrib>Thammasorn, Phawis</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Miyaoka, Robert S</creatorcontrib><creatorcontrib>Vesselle, Hubert J</creatorcontrib><creatorcontrib>Kinahan, Paul E</creatorcontrib><creatorcontrib>Rengan, Ramesh</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><title>Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. Twenty-five patients with locally advanced non-small cell lung cancer, enrolled on the FLARE-RT phase II trial (NCT02773238), underwent FDG PET/CT imaging prior to (PETpre) and during week 3 (PETmid) of concurrent chemoradiotherapy. Voxel Forecast was designed to predict tumor voxel standardized uptake value (SUV) on PETmid from baseline patient-level and voxel-level covariates using a custom generalized least squares (GLS) algorithm. Matérn covariance matrices were fit to patient- specific empirical variograms of distance-dependent intervoxel correlation. Regression coefficients from variogram-based weights and corresponding standard errors were estimated using the jackknife technique. The framework was validated using statistical simulations of known spatially variant tumor response. Mean absolute prediction errors (MAEs) of Voxel Forecast models were calculated under leave-one-patient-out cross-validation. Patient-level forecasts resulted in tumor voxel SUV MAE on PETmid of 1.5 g/mL while combined patient- and voxel-level forecasts achieved lower MAE of 1.0 g/mL ( &lt; 0.0001). PETpre voxel SUV was the most important predictor of PETmid voxel SUV. Patients with a greater percentage of under-responding tumor voxels were classified as PETmid nonresponders ( = 0.030) with worse overall survival prognosis ( &lt; 0.001). Voxel Forecast multiscale regression provides a statistical framework to predict voxel-wise response patterns during therapy. Voxel Forecast can be extended to predict spatially variant response on multimodal quantitative imaging and may eventually guide optimized spatial-temporal dose distributions for precision cancer therapy.</description><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u1TAQhSNERX_gEUBesklrO7GdsEBCES2VblUopVtr4jipka8dbKfqfZS-LY76I1h55Dnnm7FPUbwn-JgQ1pwQLJoS1xU97rqrkjRl1eLmVXFAGBNlRTl7netnzX5xGONvjElNcP2m2K8IqSnD4qB4uPH32qJTH7SCmNDoA_qeaxONd-jSKW_9tPu03g1GJeMm9HOGZMDaHbqBYMAlBG5AF4tNJiqwGnXglA7o-lYHmHfoSsfZu6hRBm68m0xaBuPAoh9LNpuUaXcaXXir1WIhoPMtTHnO22JvBBv1u6fzqPh1-vW6-1ZuLs_Ouy-bUtWEpJINtFEYGj1SRpTqW9yvzx6prgUGLvqWY0rqsR1103M1gGorzIVggnI8KlEdFZ8fufPSb_WgtEsBrJyD2ULYSQ9G_t9x5lZO_k5y3grW8Az4-AQI_s-iY5Lb_BHaWnDaL1FSWtFaMF6xLGWPUhV8jEGPL2MIlmusct1drpHJHKskjVxjzb4P_-744nrOsfoLfa6ivg</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Bowen, Stephen R</creator><creator>Hippe, Daniel S</creator><creator>Chaovalitwongse, W Art</creator><creator>Duan, Chunyan</creator><creator>Thammasorn, Phawis</creator><creator>Liu, Xiao</creator><creator>Miyaoka, Robert S</creator><creator>Vesselle, Hubert J</creator><creator>Kinahan, Paul E</creator><creator>Rengan, Ramesh</creator><creator>Zeng, Jing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190815</creationdate><title>Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging</title><author>Bowen, Stephen R ; Hippe, Daniel S ; Chaovalitwongse, W Art ; Duan, Chunyan ; Thammasorn, Phawis ; Liu, Xiao ; Miyaoka, Robert S ; Vesselle, Hubert J ; Kinahan, Paul E ; Rengan, Ramesh ; Zeng, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Stephen R</creatorcontrib><creatorcontrib>Hippe, Daniel S</creatorcontrib><creatorcontrib>Chaovalitwongse, W Art</creatorcontrib><creatorcontrib>Duan, Chunyan</creatorcontrib><creatorcontrib>Thammasorn, Phawis</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Miyaoka, Robert S</creatorcontrib><creatorcontrib>Vesselle, Hubert J</creatorcontrib><creatorcontrib>Kinahan, Paul E</creatorcontrib><creatorcontrib>Rengan, Ramesh</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Stephen R</au><au>Hippe, Daniel S</au><au>Chaovalitwongse, W Art</au><au>Duan, Chunyan</au><au>Thammasorn, Phawis</au><au>Liu, Xiao</au><au>Miyaoka, Robert S</au><au>Vesselle, Hubert J</au><au>Kinahan, Paul E</au><au>Rengan, Ramesh</au><au>Zeng, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>25</volume><issue>16</issue><spage>5027</spage><epage>5037</epage><pages>5027-5037</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Prediction of spatially variant response to cancer therapies can inform risk-adaptive management within precision oncology. We developed the "Voxel Forecast" multiscale regression framework for predicting spatially variant tumor response to chemoradiotherapy on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. Twenty-five patients with locally advanced non-small cell lung cancer, enrolled on the FLARE-RT phase II trial (NCT02773238), underwent FDG PET/CT imaging prior to (PETpre) and during week 3 (PETmid) of concurrent chemoradiotherapy. Voxel Forecast was designed to predict tumor voxel standardized uptake value (SUV) on PETmid from baseline patient-level and voxel-level covariates using a custom generalized least squares (GLS) algorithm. Matérn covariance matrices were fit to patient- specific empirical variograms of distance-dependent intervoxel correlation. Regression coefficients from variogram-based weights and corresponding standard errors were estimated using the jackknife technique. The framework was validated using statistical simulations of known spatially variant tumor response. Mean absolute prediction errors (MAEs) of Voxel Forecast models were calculated under leave-one-patient-out cross-validation. Patient-level forecasts resulted in tumor voxel SUV MAE on PETmid of 1.5 g/mL while combined patient- and voxel-level forecasts achieved lower MAE of 1.0 g/mL ( &lt; 0.0001). PETpre voxel SUV was the most important predictor of PETmid voxel SUV. Patients with a greater percentage of under-responding tumor voxels were classified as PETmid nonresponders ( = 0.030) with worse overall survival prognosis ( &lt; 0.001). Voxel Forecast multiscale regression provides a statistical framework to predict voxel-wise response patterns during therapy. Voxel Forecast can be extended to predict spatially variant response on multimodal quantitative imaging and may eventually guide optimized spatial-temporal dose distributions for precision cancer therapy.</abstract><cop>United States</cop><pmid>31142507</pmid><doi>10.1158/1078-0432.CCR-18-3908</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2019-08, Vol.25 (16), p.5027-5037
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697586
source Freely Accessible Journals
title Voxel Forecast for Precision Oncology: Predicting Spatially Variant and Multiscale Cancer Therapy Response on Longitudinal Quantitative Molecular Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voxel%20Forecast%20for%20Precision%20Oncology:%20Predicting%20Spatially%20Variant%20and%20Multiscale%20Cancer%20Therapy%20Response%20on%20Longitudinal%20Quantitative%20Molecular%20Imaging&rft.jtitle=Clinical%20cancer%20research&rft.au=Bowen,%20Stephen%20R&rft.date=2019-08-15&rft.volume=25&rft.issue=16&rft.spage=5027&rft.epage=5037&rft.pages=5027-5037&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-18-3908&rft_dat=%3Cproquest_pubme%3E2232475635%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-5d28c0a8ef251ccb90b1078f2e470a67b960214f9fe8b6cdac93067757260fc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232475635&rft_id=info:pmid/31142507&rfr_iscdi=true