Loading…
Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation
Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, a...
Saved in:
Published in: | Nucleic acids research 2019-08, Vol.47 (14), p.7380-7391 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3 |
container_end_page | 7391 |
container_issue | 14 |
container_start_page | 7380 |
container_title | Nucleic acids research |
container_volume | 47 |
creator | Cote, Joy M Kuo, Yin-Ming Henry, Ryan A Scherman, Hataichanok Krzizike, Daniel D Andrews, Andrew J |
description | Abstract
The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56. |
doi_str_mv | 10.1093/nar/gkz508 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz508</oup_id><sourcerecordid>2250634489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMotv65-AEkF0GE1WSTzSYeBClqpQUv7Tkk2Wy7drupm6xFP71rtxa9eJqB-c2bxzwAzjC6xkiQm0rVN7PFZ4L4HuhjwuKIChbvgz4iKIkworwHjrx_RQhTnNBD0CMYC8pT1AfTydrBXJngaqiaMLdVKIwKhatu4b3PMVzarFDBemhq531Q5QJqG9bWVnBI4AhTqKoMjhIGlbHho9zsnoCDXJXenm7rMZg-PkwGw2j88vQ8uB9HhqY0REJgy1ObZ0lMCTMqRZrknBuNdY5MgnVMM6JEnjKsEWG67TJBFCeJ0VrYjByDu0531ejWqGnd16qUq7pYqvpDOlXIv5OqmMuZe5eMCc5Y2gpcbgVq99ZYH-Sy8MaWpaqsa7yM4wQxQikXLXrVoZtH1DbfncFIfucg2xxkl0MLn_82tkN_Ht8CFx3gmtV_Ql9eHpIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250634489</pqid></control><display><type>article</type><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><source>Oxford University Press Open Access</source><creator>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</creator><creatorcontrib>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</creatorcontrib><description>Abstract
The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz508</identifier><identifier>PMID: 31194870</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Gene regulation, Chromatin and Epigenetics ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Histones - metabolism ; Lysine - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Mutation ; Protein Binding ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2019-08, Vol.47 (14), p.7380-7391</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2019. 2019</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</citedby><cites>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</cites><orcidid>0000-0002-4240-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698667/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698667/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkz508$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31194870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cote, Joy M</creatorcontrib><creatorcontrib>Kuo, Yin-Ming</creatorcontrib><creatorcontrib>Henry, Ryan A</creatorcontrib><creatorcontrib>Scherman, Hataichanok</creatorcontrib><creatorcontrib>Krzizike, Daniel D</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</description><subject>Acetylation</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones - metabolism</subject><subject>Lysine - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMotv65-AEkF0GE1WSTzSYeBClqpQUv7Tkk2Wy7drupm6xFP71rtxa9eJqB-c2bxzwAzjC6xkiQm0rVN7PFZ4L4HuhjwuKIChbvgz4iKIkworwHjrx_RQhTnNBD0CMYC8pT1AfTydrBXJngaqiaMLdVKIwKhatu4b3PMVzarFDBemhq531Q5QJqG9bWVnBI4AhTqKoMjhIGlbHho9zsnoCDXJXenm7rMZg-PkwGw2j88vQ8uB9HhqY0REJgy1ObZ0lMCTMqRZrknBuNdY5MgnVMM6JEnjKsEWG67TJBFCeJ0VrYjByDu0531ejWqGnd16qUq7pYqvpDOlXIv5OqmMuZe5eMCc5Y2gpcbgVq99ZYH-Sy8MaWpaqsa7yM4wQxQikXLXrVoZtH1DbfncFIfucg2xxkl0MLn_82tkN_Ht8CFx3gmtV_Ql9eHpIL</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Cote, Joy M</creator><creator>Kuo, Yin-Ming</creator><creator>Henry, Ryan A</creator><creator>Scherman, Hataichanok</creator><creator>Krzizike, Daniel D</creator><creator>Andrews, Andrew J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4240-8878</orcidid></search><sort><creationdate>20190822</creationdate><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><author>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones - metabolism</topic><topic>Lysine - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cote, Joy M</creatorcontrib><creatorcontrib>Kuo, Yin-Ming</creatorcontrib><creatorcontrib>Henry, Ryan A</creatorcontrib><creatorcontrib>Scherman, Hataichanok</creatorcontrib><creatorcontrib>Krzizike, Daniel D</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cote, Joy M</au><au>Kuo, Yin-Ming</au><au>Henry, Ryan A</au><au>Scherman, Hataichanok</au><au>Krzizike, Daniel D</au><au>Andrews, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>47</volume><issue>14</issue><spage>7380</spage><epage>7391</epage><pages>7380-7391</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31194870</pmid><doi>10.1093/nar/gkz508</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4240-8878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2019-08, Vol.47 (14), p.7380-7391 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698667 |
source | Oxford University Press Open Access |
subjects | Acetylation Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Gene regulation, Chromatin and Epigenetics Histone Acetyltransferases - genetics Histone Acetyltransferases - metabolism Histones - metabolism Lysine - metabolism Molecular Chaperones - genetics Molecular Chaperones - metabolism Mutation Protein Binding Protein Processing, Post-Translational Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Substrate Specificity |
title | Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20factor%20authentication:%20Asf1%20mediates%20crosstalk%20between%20H3%20K14%20and%20K56%20acetylation&rft.jtitle=Nucleic%20acids%20research&rft.au=Cote,%20Joy%20M&rft.date=2019-08-22&rft.volume=47&rft.issue=14&rft.spage=7380&rft.epage=7391&rft.pages=7380-7391&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz508&rft_dat=%3Cproquest_TOX%3E2250634489%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250634489&rft_id=info:pmid/31194870&rft_oup_id=10.1093/nar/gkz508&rfr_iscdi=true |