Loading…

Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation

Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, a...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2019-08, Vol.47 (14), p.7380-7391
Main Authors: Cote, Joy M, Kuo, Yin-Ming, Henry, Ryan A, Scherman, Hataichanok, Krzizike, Daniel D, Andrews, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3
cites cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3
container_end_page 7391
container_issue 14
container_start_page 7380
container_title Nucleic acids research
container_volume 47
creator Cote, Joy M
Kuo, Yin-Ming
Henry, Ryan A
Scherman, Hataichanok
Krzizike, Daniel D
Andrews, Andrew J
description Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.
doi_str_mv 10.1093/nar/gkz508
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkz508</oup_id><sourcerecordid>2250634489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMotv65-AEkF0GE1WSTzSYeBClqpQUv7Tkk2Wy7drupm6xFP71rtxa9eJqB-c2bxzwAzjC6xkiQm0rVN7PFZ4L4HuhjwuKIChbvgz4iKIkworwHjrx_RQhTnNBD0CMYC8pT1AfTydrBXJngaqiaMLdVKIwKhatu4b3PMVzarFDBemhq531Q5QJqG9bWVnBI4AhTqKoMjhIGlbHho9zsnoCDXJXenm7rMZg-PkwGw2j88vQ8uB9HhqY0REJgy1ObZ0lMCTMqRZrknBuNdY5MgnVMM6JEnjKsEWG67TJBFCeJ0VrYjByDu0531ejWqGnd16qUq7pYqvpDOlXIv5OqmMuZe5eMCc5Y2gpcbgVq99ZYH-Sy8MaWpaqsa7yM4wQxQikXLXrVoZtH1DbfncFIfucg2xxkl0MLn_82tkN_Ht8CFx3gmtV_Ql9eHpIL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250634489</pqid></control><display><type>article</type><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><source>Oxford University Press Open Access</source><creator>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</creator><creatorcontrib>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</creatorcontrib><description>Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz508</identifier><identifier>PMID: 31194870</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetylation ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Gene regulation, Chromatin and Epigenetics ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; Histones - metabolism ; Lysine - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Mutation ; Protein Binding ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2019-08, Vol.47 (14), p.7380-7391</ispartof><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2019. 2019</rights><rights>Published by Oxford University Press on behalf of Nucleic Acids Research 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</citedby><cites>FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</cites><orcidid>0000-0002-4240-8878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698667/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698667/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkz508$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31194870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cote, Joy M</creatorcontrib><creatorcontrib>Kuo, Yin-Ming</creatorcontrib><creatorcontrib>Henry, Ryan A</creatorcontrib><creatorcontrib>Scherman, Hataichanok</creatorcontrib><creatorcontrib>Krzizike, Daniel D</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</description><subject>Acetylation</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones - metabolism</subject><subject>Lysine - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMotv65-AEkF0GE1WSTzSYeBClqpQUv7Tkk2Wy7drupm6xFP71rtxa9eJqB-c2bxzwAzjC6xkiQm0rVN7PFZ4L4HuhjwuKIChbvgz4iKIkworwHjrx_RQhTnNBD0CMYC8pT1AfTydrBXJngaqiaMLdVKIwKhatu4b3PMVzarFDBemhq531Q5QJqG9bWVnBI4AhTqKoMjhIGlbHho9zsnoCDXJXenm7rMZg-PkwGw2j88vQ8uB9HhqY0REJgy1ObZ0lMCTMqRZrknBuNdY5MgnVMM6JEnjKsEWG67TJBFCeJ0VrYjByDu0531ejWqGnd16qUq7pYqvpDOlXIv5OqmMuZe5eMCc5Y2gpcbgVq99ZYH-Sy8MaWpaqsa7yM4wQxQikXLXrVoZtH1DbfncFIfucg2xxkl0MLn_82tkN_Ht8CFx3gmtV_Ql9eHpIL</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Cote, Joy M</creator><creator>Kuo, Yin-Ming</creator><creator>Henry, Ryan A</creator><creator>Scherman, Hataichanok</creator><creator>Krzizike, Daniel D</creator><creator>Andrews, Andrew J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4240-8878</orcidid></search><sort><creationdate>20190822</creationdate><title>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</title><author>Cote, Joy M ; Kuo, Yin-Ming ; Henry, Ryan A ; Scherman, Hataichanok ; Krzizike, Daniel D ; Andrews, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones - metabolism</topic><topic>Lysine - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cote, Joy M</creatorcontrib><creatorcontrib>Kuo, Yin-Ming</creatorcontrib><creatorcontrib>Henry, Ryan A</creatorcontrib><creatorcontrib>Scherman, Hataichanok</creatorcontrib><creatorcontrib>Krzizike, Daniel D</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cote, Joy M</au><au>Kuo, Yin-Ming</au><au>Henry, Ryan A</au><au>Scherman, Hataichanok</au><au>Krzizike, Daniel D</au><au>Andrews, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>47</volume><issue>14</issue><spage>7380</spage><epage>7391</epage><pages>7380-7391</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109–Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109–Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109–Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31194870</pmid><doi>10.1093/nar/gkz508</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4240-8878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-08, Vol.47 (14), p.7380-7391
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698667
source Oxford University Press Open Access
subjects Acetylation
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Gene regulation, Chromatin and Epigenetics
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
Histones - metabolism
Lysine - metabolism
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Mutation
Protein Binding
Protein Processing, Post-Translational
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Substrate Specificity
title Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20factor%20authentication:%20Asf1%20mediates%20crosstalk%20between%20H3%20K14%20and%20K56%20acetylation&rft.jtitle=Nucleic%20acids%20research&rft.au=Cote,%20Joy%20M&rft.date=2019-08-22&rft.volume=47&rft.issue=14&rft.spage=7380&rft.epage=7391&rft.pages=7380-7391&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz508&rft_dat=%3Cproquest_TOX%3E2250634489%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-991e87efd52436ca70b3f88cb1bf0c51b24d3a9f761b036b9f7d93a835cbb9ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250634489&rft_id=info:pmid/31194870&rft_oup_id=10.1093/nar/gkz508&rfr_iscdi=true