Loading…

Neural correlates of long-term object memory in the mouse anterior cingulate cortex

Damage to the hippocampal formation results in a profound temporally graded retrograde amnesia, implying that it is necessary for memory acquisition but not its long-term storage. It is therefore thought that memories are transferred from the hippocampus to the cortex for long-term storage in a proc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2012-04, Vol.32 (16), p.5598-5608
Main Authors: Weible, Aldis P, Rowland, David C, Monaghan, Caitlin K, Wolfgang, Nicholas T, Kentros, Clifford G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Damage to the hippocampal formation results in a profound temporally graded retrograde amnesia, implying that it is necessary for memory acquisition but not its long-term storage. It is therefore thought that memories are transferred from the hippocampus to the cortex for long-term storage in a process called systems consolidation (Dudai and Morris, 2000). Where in the cortex this occurs remains an open question. Recent work (Frankland et al., 2005; Vetere et al., 2011) suggests the anterior cingulate cortex (ACC) as a likely candidate area, but there is little direct electrophysiological evidence to support this claim. Previously, we demonstrated object-associated firing correlates in caudal ACC during tests of recognition memory and described evidence of neuronal responses to where an object had been following a brief delay. However, long-term memory requires evidence of more durable representations. Here we examined the activity of ACC neurons while testing for long-term memory of an absent object. Mice explored two objects in an arena and then were returned 6 h later with one of the objects removed. Mice continued to explore where the object had been, demonstrating memory for that object. Remarkably, some ACC neurons continued to respond where the object had been, while others developed new responses in the absent object's location. The incidence of absent-object responses by ACC neurons was greatly increased with increased familiarization to the objects, and such responses were still evident 1 month later. These data strongly suggest that the ACC contains neural correlates of consolidated object/place association memory.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.5265-11.2012