Loading…
Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression
The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatmen...
Saved in:
Published in: | The Journal of neuroscience 2017-11, Vol.37 (48), p.11701-11714 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13 |
container_end_page | 11714 |
container_issue | 48 |
container_start_page | 11701 |
container_title | The Journal of neuroscience |
container_volume | 37 |
creator | Wu, Hai-Yun Tang, Xue-Qi Mao, Xiao-Fang Wang, Yong-Xiang |
description | The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin
and
and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.
Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways. |
doi_str_mv | 10.1523/JNEUROSCI.1799-17.2017 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6705741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094490864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhS0EokvhFapI3HDjZZw4_rlBqqqlLNpS1NJry0kmW7dZO9gJgtfiQXgmvGpZATczI803R_Y5hJwwWLK6rN5-_LS6ubq8PlsvmdSaMrksgcknZJG3mpYc2FOygFICFVzyI_IipTsAkBl6To5KDYorIRZkOp2n0EbnsVj7CeOA873zlEFxgZ2zE6bifJhbuw2ebtw9Fp9xnFyHlBVX2OY5RLr23dxiV1yPztuhuHBtDNvB5fHXT7ryXYjjrfPF6vsYMSUX_EvyrLdDwleP_ZjcvF99OftAN5fn67PTDW25ridqBXDBsZcADJSVGqBRdVNVUCKySnWd0r3WDedlLVqrRGXBWqaqvldl07DqmLx70B3nZoddi36KdjBjdDsbf5hgnfl3492t2YZvRkioJd8LvHkUiOHrjGkyO5daHAbrMczJMF2ruhJQ1xl9_R96F-aY_UimBM15dlzwTIkHKluUUsT-8BgGZh-sOQRr9sHmYvbB5sOTv79yOPuTZPUbVeihdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094490864</pqid></control><display><type>article</type><title>Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression</title><source>Open Access: PubMed Central</source><creator>Wu, Hai-Yun ; Tang, Xue-Qi ; Mao, Xiao-Fang ; Wang, Yong-Xiang</creator><creatorcontrib>Wu, Hai-Yun ; Tang, Xue-Qi ; Mao, Xiao-Fang ; Wang, Yong-Xiang</creatorcontrib><description>The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin
and
and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.
Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1799-17.2017</identifier><identifier>PMID: 29084866</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Activation ; Animals ; Animals, Newborn ; Autocrine Communication - drug effects ; Autocrine Communication - physiology ; Autocrine signalling ; beta-Endorphin - biosynthesis ; beta-Endorphin - genetics ; Cells, Cultured ; Cyclic AMP response element-binding protein ; Cytokines ; Dose-Response Relationship, Drug ; Endorphins ; Exenatide ; Gene Expression ; Glucagon ; Glucagon-like peptide 1 ; Glucagon-Like Peptide-1 Receptor - agonists ; Glucagon-Like Peptide-1 Receptor - biosynthesis ; Glucagon-Like Peptide-1 Receptor - genetics ; Inflammation ; Injection ; Interleukin 10 ; Interleukin 4 ; Interleukin 6 ; Interleukin-10 - biosynthesis ; Interleukin-10 - genetics ; Interleukin-10 - pharmacology ; Kinases ; Male ; Markers ; Microglia ; Microglia - drug effects ; Microglia - metabolism ; Neuropathy ; Neuroprotection ; Pain perception ; Peptides - pharmacology ; Phosphorylation ; Protein kinase A ; Rats ; Rats, Wistar ; Receptor mechanisms ; Receptors ; Rodents ; Signal transduction ; siRNA ; Spinal Cord - cytology ; Spinal Cord - drug effects ; Spinal Cord - metabolism ; Stat3 protein ; Tumor necrosis factor-α ; Venoms - pharmacology</subject><ispartof>The Journal of neuroscience, 2017-11, Vol.37 (48), p.11701-11714</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/3711701-14$15.00/0.</rights><rights>Copyright Society for Neuroscience Nov 29, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/3711701-14$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13</citedby><cites>FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705741/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705741/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29084866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Hai-Yun</creatorcontrib><creatorcontrib>Tang, Xue-Qi</creatorcontrib><creatorcontrib>Mao, Xiao-Fang</creatorcontrib><creatorcontrib>Wang, Yong-Xiang</creatorcontrib><title>Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin
and
and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.
Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.</description><subject>Activation</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autocrine Communication - drug effects</subject><subject>Autocrine Communication - physiology</subject><subject>Autocrine signalling</subject><subject>beta-Endorphin - biosynthesis</subject><subject>beta-Endorphin - genetics</subject><subject>Cells, Cultured</subject><subject>Cyclic AMP response element-binding protein</subject><subject>Cytokines</subject><subject>Dose-Response Relationship, Drug</subject><subject>Endorphins</subject><subject>Exenatide</subject><subject>Gene Expression</subject><subject>Glucagon</subject><subject>Glucagon-like peptide 1</subject><subject>Glucagon-Like Peptide-1 Receptor - agonists</subject><subject>Glucagon-Like Peptide-1 Receptor - biosynthesis</subject><subject>Glucagon-Like Peptide-1 Receptor - genetics</subject><subject>Inflammation</subject><subject>Injection</subject><subject>Interleukin 10</subject><subject>Interleukin 4</subject><subject>Interleukin 6</subject><subject>Interleukin-10 - biosynthesis</subject><subject>Interleukin-10 - genetics</subject><subject>Interleukin-10 - pharmacology</subject><subject>Kinases</subject><subject>Male</subject><subject>Markers</subject><subject>Microglia</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Neuropathy</subject><subject>Neuroprotection</subject><subject>Pain perception</subject><subject>Peptides - pharmacology</subject><subject>Phosphorylation</subject><subject>Protein kinase A</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>siRNA</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - metabolism</subject><subject>Stat3 protein</subject><subject>Tumor necrosis factor-α</subject><subject>Venoms - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkd1u1DAQhS0EokvhFapI3HDjZZw4_rlBqqqlLNpS1NJry0kmW7dZO9gJgtfiQXgmvGpZATczI803R_Y5hJwwWLK6rN5-_LS6ubq8PlsvmdSaMrksgcknZJG3mpYc2FOygFICFVzyI_IipTsAkBl6To5KDYorIRZkOp2n0EbnsVj7CeOA873zlEFxgZ2zE6bifJhbuw2ebtw9Fp9xnFyHlBVX2OY5RLr23dxiV1yPztuhuHBtDNvB5fHXT7ryXYjjrfPF6vsYMSUX_EvyrLdDwleP_ZjcvF99OftAN5fn67PTDW25ridqBXDBsZcADJSVGqBRdVNVUCKySnWd0r3WDedlLVqrRGXBWqaqvldl07DqmLx70B3nZoddi36KdjBjdDsbf5hgnfl3492t2YZvRkioJd8LvHkUiOHrjGkyO5daHAbrMczJMF2ruhJQ1xl9_R96F-aY_UimBM15dlzwTIkHKluUUsT-8BgGZh-sOQRr9sHmYvbB5sOTv79yOPuTZPUbVeihdg</recordid><startdate>20171129</startdate><enddate>20171129</enddate><creator>Wu, Hai-Yun</creator><creator>Tang, Xue-Qi</creator><creator>Mao, Xiao-Fang</creator><creator>Wang, Yong-Xiang</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171129</creationdate><title>Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression</title><author>Wu, Hai-Yun ; Tang, Xue-Qi ; Mao, Xiao-Fang ; Wang, Yong-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autocrine Communication - drug effects</topic><topic>Autocrine Communication - physiology</topic><topic>Autocrine signalling</topic><topic>beta-Endorphin - biosynthesis</topic><topic>beta-Endorphin - genetics</topic><topic>Cells, Cultured</topic><topic>Cyclic AMP response element-binding protein</topic><topic>Cytokines</topic><topic>Dose-Response Relationship, Drug</topic><topic>Endorphins</topic><topic>Exenatide</topic><topic>Gene Expression</topic><topic>Glucagon</topic><topic>Glucagon-like peptide 1</topic><topic>Glucagon-Like Peptide-1 Receptor - agonists</topic><topic>Glucagon-Like Peptide-1 Receptor - biosynthesis</topic><topic>Glucagon-Like Peptide-1 Receptor - genetics</topic><topic>Inflammation</topic><topic>Injection</topic><topic>Interleukin 10</topic><topic>Interleukin 4</topic><topic>Interleukin 6</topic><topic>Interleukin-10 - biosynthesis</topic><topic>Interleukin-10 - genetics</topic><topic>Interleukin-10 - pharmacology</topic><topic>Kinases</topic><topic>Male</topic><topic>Markers</topic><topic>Microglia</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Neuropathy</topic><topic>Neuroprotection</topic><topic>Pain perception</topic><topic>Peptides - pharmacology</topic><topic>Phosphorylation</topic><topic>Protein kinase A</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>siRNA</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - metabolism</topic><topic>Stat3 protein</topic><topic>Tumor necrosis factor-α</topic><topic>Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hai-Yun</creatorcontrib><creatorcontrib>Tang, Xue-Qi</creatorcontrib><creatorcontrib>Mao, Xiao-Fang</creatorcontrib><creatorcontrib>Wang, Yong-Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hai-Yun</au><au>Tang, Xue-Qi</au><au>Mao, Xiao-Fang</au><au>Wang, Yong-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-11-29</date><risdate>2017</risdate><volume>37</volume><issue>48</issue><spage>11701</spage><epage>11714</epage><pages>11701-11714</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68. Intrathecal exenatide injection also significantly upregulated spinal microglial expression of IL-10, IL-4, Arg 1, and CD206, but not TNF-α, IL-1β, IL-6, or CD68. Intrathecal injection of exenatide stimulated spinal microglial expression of IL-10 and β-endorphin in neuropathic rats. Furthermore, treatment with IL-10 (but not IL-4) stimulated β-endorphin expression in cultured primary microglia, whereas treatment with β-endorphin failed to increase IL-10 expression. The IL-10-neutralizing antibody entirely blocked exenatide-induced spinal microglial expression of β-endorphin
and
and fully blocked exenatide mechanical antiallodynia in neuropathic rats. Moreover, specific cAMP/PKA/p38 signal inhibitors and siRNA/p38β, but not siRNA/p38α, completely blocked exenatide-induced IL-10 expression in cultured primary microglia. Knock-down of IL-10 receptor-α mRNA using siRNA fully inhibited exenatide-induced spinal microglial β-endorphin expression and mechanical antiallodynia in neuropathy. Exenatide also markedly stimulated phosphorylation of the transcription factor STAT3 in cultured primary microglia and β-endorphin stimulation was completely inhibited by the specific STAT3 activation inhibitor. These results revealed that IL-10 in microglia mediated β-endorphin expression after GLP-1 receptor activation through the autocrine cAMP/PKA/p38β/CREB and subsequent IL-10 receptor/STAT3 signal pathways.
Activation of GLP-1 receptors specifically and simultaneously stimulates the expression of anti-inflammatory cytokines IL-10 and IL-4, as well as the neuroprotective factor β-endorphin from microglia. GLP-1 receptor agonism induces β-endorphin expression and antinociception through autocrine release of IL-10. Activation of GLP-1 receptors stimulates IL-10 and β-endorphin expression subsequently through the Gs-cAMP/PKA/p38β/CREB and IL-10/IL-10 receptor-α/STAT3 signal transduction pathways.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>29084866</pmid><doi>10.1523/JNEUROSCI.1799-17.2017</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2017-11, Vol.37 (48), p.11701-11714 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6705741 |
source | Open Access: PubMed Central |
subjects | Activation Animals Animals, Newborn Autocrine Communication - drug effects Autocrine Communication - physiology Autocrine signalling beta-Endorphin - biosynthesis beta-Endorphin - genetics Cells, Cultured Cyclic AMP response element-binding protein Cytokines Dose-Response Relationship, Drug Endorphins Exenatide Gene Expression Glucagon Glucagon-like peptide 1 Glucagon-Like Peptide-1 Receptor - agonists Glucagon-Like Peptide-1 Receptor - biosynthesis Glucagon-Like Peptide-1 Receptor - genetics Inflammation Injection Interleukin 10 Interleukin 4 Interleukin 6 Interleukin-10 - biosynthesis Interleukin-10 - genetics Interleukin-10 - pharmacology Kinases Male Markers Microglia Microglia - drug effects Microglia - metabolism Neuropathy Neuroprotection Pain perception Peptides - pharmacology Phosphorylation Protein kinase A Rats Rats, Wistar Receptor mechanisms Receptors Rodents Signal transduction siRNA Spinal Cord - cytology Spinal Cord - drug effects Spinal Cord - metabolism Stat3 protein Tumor necrosis factor-α Venoms - pharmacology |
title | Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocrine%20Interleukin-10%20Mediates%20Glucagon-Like%20Peptide-1%20Receptor-Induced%20Spinal%20Microglial%20%CE%B2-Endorphin%20Expression&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wu,%20Hai-Yun&rft.date=2017-11-29&rft.volume=37&rft.issue=48&rft.spage=11701&rft.epage=11714&rft.pages=11701-11714&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1799-17.2017&rft_dat=%3Cproquest_pubme%3E2094490864%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-a60464ef700108a7900b85b3302ee138dd89f99b44256ca863a0aa183ff82bb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094490864&rft_id=info:pmid/29084866&rfr_iscdi=true |