Loading…
Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes
Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including...
Saved in:
Published in: | AIChE journal 2019-02, Vol.65 (2), p.629-639 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3 |
container_end_page | 639 |
container_issue | 2 |
container_start_page | 629 |
container_title | AIChE journal |
container_volume | 65 |
creator | Feng, Jianyuan Hajizadeh, Iman Yu, Xia Rashid, Mudassir Samadi, Sediqeh Sevil, Mert Hobbs, Nicole Brandt, Rachel Lazaro, Caterina Maloney, Zacharie Littlejohn, Elizabeth Quinn, Laurie Cinar, Ali |
description | Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor‐based subspace identification, and approximate linear dependency‐based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose‐insulin metabolism has time‐varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model‐estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019 |
doi_str_mv | 10.1002/aic.16435 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6707739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164584838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3</originalsourceid><addsrcrecordid>eNp1kcFKHDEcxkOp1NX20BcoAS_tYTTJJJOsh8Ky1FZQvLTn8J8ko5HsxCYzle2pj9Bn9EnMOqtYoaeQLz9-fOFD6D0lh5QQdgTeHNKG1-IVmlHBZSXmRLxGM0IIrUpAd9FeztflxqRib9BuTTmXXMkZ-n0-hsHf_fm7itYFnF2fY8IdlBRbNzgz-Nhj6C22MABOzsTe-OBhkx_jBTaQHc7DaNf41g9X-DKMJpZow7l-SA_g1ptxV-TWQ1vM-S3a6SBk92577qMfJ1--L79VZxdfT5eLs8pwRUTViUYaUgvZig4aO6eKdMBaZstdNZw3LQUmQSjOiWxJ56iVhhkAxZnidVvvo8-T92ZsV85OrYK-SX4Faa0jeP3vS--v9GX8pRtJpKznRfBxK0jx5-jyoFc-GxcC9C6OWTNWevJ5w5qCHrxAr-OY-vI9zcpCpaSqVaE-TZRJMefkuqcylOjNorosqh8WLeyH5-2fyMcJC3A0Abc-uPX_TXpxupyU9ySkrdI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164584838</pqid></control><display><type>article</type><title>Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Feng, Jianyuan ; Hajizadeh, Iman ; Yu, Xia ; Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hobbs, Nicole ; Brandt, Rachel ; Lazaro, Caterina ; Maloney, Zacharie ; Littlejohn, Elizabeth ; Quinn, Laurie ; Cinar, Ali</creator><creatorcontrib>Feng, Jianyuan ; Hajizadeh, Iman ; Yu, Xia ; Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hobbs, Nicole ; Brandt, Rachel ; Lazaro, Caterina ; Maloney, Zacharie ; Littlejohn, Elizabeth ; Quinn, Laurie ; Cinar, Ali</creatorcontrib><description>Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor‐based subspace identification, and approximate linear dependency‐based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose‐insulin metabolism has time‐varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model‐estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16435</identifier><identifier>PMID: 31447487</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Case studies ; data reconciliation ; Dependence ; Diabetes ; Diabetes mellitus ; Fault detection ; Fault diagnosis ; Glucose ; Glucose metabolism ; Identification methods ; Information processing ; Insulin ; Kalman filter ; Kalman filters ; kernel filter ; Least squares ; Metabolism ; Neural networks ; Organic chemistry ; Outliers (statistics) ; Pancreas ; partial least squares ; Sensors ; subspace identification</subject><ispartof>AIChE journal, 2019-02, Vol.65 (2), p.629-639</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3</citedby><cites>FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3</cites><orcidid>0000-0002-1607-9943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31447487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jianyuan</creatorcontrib><creatorcontrib>Hajizadeh, Iman</creatorcontrib><creatorcontrib>Yu, Xia</creatorcontrib><creatorcontrib>Rashid, Mudassir</creatorcontrib><creatorcontrib>Samadi, Sediqeh</creatorcontrib><creatorcontrib>Sevil, Mert</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Brandt, Rachel</creatorcontrib><creatorcontrib>Lazaro, Caterina</creatorcontrib><creatorcontrib>Maloney, Zacharie</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Quinn, Laurie</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><title>Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor‐based subspace identification, and approximate linear dependency‐based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose‐insulin metabolism has time‐varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model‐estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>data reconciliation</subject><subject>Dependence</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Identification methods</subject><subject>Information processing</subject><subject>Insulin</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>kernel filter</subject><subject>Least squares</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Outliers (statistics)</subject><subject>Pancreas</subject><subject>partial least squares</subject><subject>Sensors</subject><subject>subspace identification</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKHDEcxkOp1NX20BcoAS_tYTTJJJOsh8Ky1FZQvLTn8J8ko5HsxCYzle2pj9Bn9EnMOqtYoaeQLz9-fOFD6D0lh5QQdgTeHNKG1-IVmlHBZSXmRLxGM0IIrUpAd9FeztflxqRib9BuTTmXXMkZ-n0-hsHf_fm7itYFnF2fY8IdlBRbNzgz-Nhj6C22MABOzsTe-OBhkx_jBTaQHc7DaNf41g9X-DKMJpZow7l-SA_g1ptxV-TWQ1vM-S3a6SBk92577qMfJ1--L79VZxdfT5eLs8pwRUTViUYaUgvZig4aO6eKdMBaZstdNZw3LQUmQSjOiWxJ56iVhhkAxZnidVvvo8-T92ZsV85OrYK-SX4Faa0jeP3vS--v9GX8pRtJpKznRfBxK0jx5-jyoFc-GxcC9C6OWTNWevJ5w5qCHrxAr-OY-vI9zcpCpaSqVaE-TZRJMefkuqcylOjNorosqh8WLeyH5-2fyMcJC3A0Abc-uPX_TXpxupyU9ySkrdI</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Feng, Jianyuan</creator><creator>Hajizadeh, Iman</creator><creator>Yu, Xia</creator><creator>Rashid, Mudassir</creator><creator>Samadi, Sediqeh</creator><creator>Sevil, Mert</creator><creator>Hobbs, Nicole</creator><creator>Brandt, Rachel</creator><creator>Lazaro, Caterina</creator><creator>Maloney, Zacharie</creator><creator>Littlejohn, Elizabeth</creator><creator>Quinn, Laurie</creator><creator>Cinar, Ali</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1607-9943</orcidid></search><sort><creationdate>201902</creationdate><title>Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes</title><author>Feng, Jianyuan ; Hajizadeh, Iman ; Yu, Xia ; Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hobbs, Nicole ; Brandt, Rachel ; Lazaro, Caterina ; Maloney, Zacharie ; Littlejohn, Elizabeth ; Quinn, Laurie ; Cinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>data reconciliation</topic><topic>Dependence</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Identification methods</topic><topic>Information processing</topic><topic>Insulin</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>kernel filter</topic><topic>Least squares</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Outliers (statistics)</topic><topic>Pancreas</topic><topic>partial least squares</topic><topic>Sensors</topic><topic>subspace identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jianyuan</creatorcontrib><creatorcontrib>Hajizadeh, Iman</creatorcontrib><creatorcontrib>Yu, Xia</creatorcontrib><creatorcontrib>Rashid, Mudassir</creatorcontrib><creatorcontrib>Samadi, Sediqeh</creatorcontrib><creatorcontrib>Sevil, Mert</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Brandt, Rachel</creatorcontrib><creatorcontrib>Lazaro, Caterina</creatorcontrib><creatorcontrib>Maloney, Zacharie</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Quinn, Laurie</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jianyuan</au><au>Hajizadeh, Iman</au><au>Yu, Xia</au><au>Rashid, Mudassir</au><au>Samadi, Sediqeh</au><au>Sevil, Mert</au><au>Hobbs, Nicole</au><au>Brandt, Rachel</au><au>Lazaro, Caterina</au><au>Maloney, Zacharie</au><au>Littlejohn, Elizabeth</au><au>Quinn, Laurie</au><au>Cinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2019-02</date><risdate>2019</risdate><volume>65</volume><issue>2</issue><spage>629</spage><epage>639</epage><pages>629-639</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor‐based subspace identification, and approximate linear dependency‐based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose‐insulin metabolism has time‐varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 h were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model‐estimated values. © 2018 American Institute of Chemical Engineers AIChE J, 65: 629–639, 2019</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31447487</pmid><doi>10.1002/aic.16435</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1607-9943</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2019-02, Vol.65 (2), p.629-639 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6707739 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms artificial neural network Artificial neural networks Case studies data reconciliation Dependence Diabetes Diabetes mellitus Fault detection Fault diagnosis Glucose Glucose metabolism Identification methods Information processing Insulin Kalman filter Kalman filters kernel filter Least squares Metabolism Neural networks Organic chemistry Outliers (statistics) Pancreas partial least squares Sensors subspace identification |
title | Multi‐model sensor fault detection and data reconciliation: A case study with glucose concentration sensors for diabetes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90model%20sensor%20fault%20detection%20and%20data%20reconciliation:%20A%20case%20study%20with%20glucose%20concentration%20sensors%20for%20diabetes&rft.jtitle=AIChE%20journal&rft.au=Feng,%20Jianyuan&rft.date=2019-02&rft.volume=65&rft.issue=2&rft.spage=629&rft.epage=639&rft.pages=629-639&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16435&rft_dat=%3Cproquest_pubme%3E2164584838%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4805-f567c0357b5fa6d9180fa2b2db5f86446b1a27a584407b0fe1d7c2caa842843b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164584838&rft_id=info:pmid/31447487&rfr_iscdi=true |