Loading…
Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum
The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally mod...
Saved in:
Published in: | The Journal of biological chemistry 2019-08, Vol.294 (34), p.12766-12778 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3 |
container_end_page | 12778 |
container_issue | 34 |
container_start_page | 12766 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Sanchez, Cecilia P. Moliner Cubel, Sonia Nyboer, Britta Jankowska-Döllken, Monika Schaeffer-Reiss, Christine Ayoub, Daniel Planelles, Gabrielle Lanzer, Michael |
description | The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT. |
doi_str_mv | 10.1074/jbc.RA119.009464 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820303094</els_id><sourcerecordid>2254504847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</originalsourceid><addsrcrecordid>eNp1kUGL1TAQx4so7rp69yQ56qHPJE3S1IPweKgrPPCxruAtJOl0m6VtapI-8DP4pc2z66KCuYSZ-c8_mfkVxXOCNwTX7PWtsZurLSHNBuOGCfagOCdYVmXFydeHxTnGlJQN5fKseBLjLc6HNeRxcVYRKjkV_Lz4ceh9nHs_uhGSsyguJiaXluT8hHRCnyGUVYV8h1IPyPaDD_7b4iZAAaKLSU8WUAp6irMPCQI6dLur61y0flqNIKI2LDcn_ZxzOXQTOgw6jr51y4g6PVg367CMT4tHOYjw7O6-KL68f3e9uyz3nz583G33peVUprLDHaay7nClocaVNU1XW2mNodKAMISCYMYSjsEwSWQjQXBaU1q3AlecQ3VRvF1958WM0FqY8gCDmoMbdfiuvHbq78rkenXjj0rUuBFEZINXq0H_T9vldq9OOUxZ_lkljiRrX949dlocxKRGFy0Mg57AL1FRyhnHTLI6S_EqtcHHGKC79yZYnXirzFv94q1W3rnlxZ-j3Df8BpwFb1YB5IUeHQQVrYMMrXWZUVKtd_93_wmzWb4v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254504847</pqid></control><display><type>article</type><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</creator><creatorcontrib>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</creatorcontrib><description>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.009464</identifier><identifier>PMID: 31285265</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antimalarials - pharmacology ; Chloroquine - pharmacology ; drug resistance ; Drug Resistance - drug effects ; drug transport ; genome editing ; kinase inhibitors ; Kinetics ; Life Sciences ; Membrane Transport Proteins - metabolism ; Microbiology ; Microbiology and Parasitology ; Parasitic Sensitivity Tests ; Parasitology ; PfCRT ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Plasmodium ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - metabolism ; Protozoan Proteins - antagonists & inhibitors ; Protozoan Proteins - metabolism ; Serine - metabolism ; transport velocity ; virulence factor</subject><ispartof>The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12766-12778</ispartof><rights>2019 © 2019 Sanchez et al.</rights><rights>2019 Sanchez et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Sanchez et al. 2019 Sanchez et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</citedby><cites>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</cites><orcidid>0000-0002-0220-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709616/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820303094$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31285265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02470336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Cecilia P.</creatorcontrib><creatorcontrib>Moliner Cubel, Sonia</creatorcontrib><creatorcontrib>Nyboer, Britta</creatorcontrib><creatorcontrib>Jankowska-Döllken, Monika</creatorcontrib><creatorcontrib>Schaeffer-Reiss, Christine</creatorcontrib><creatorcontrib>Ayoub, Daniel</creatorcontrib><creatorcontrib>Planelles, Gabrielle</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</description><subject>Antimalarials - pharmacology</subject><subject>Chloroquine - pharmacology</subject><subject>drug resistance</subject><subject>Drug Resistance - drug effects</subject><subject>drug transport</subject><subject>genome editing</subject><subject>kinase inhibitors</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Parasitic Sensitivity Tests</subject><subject>Parasitology</subject><subject>PfCRT</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - antagonists & inhibitors</subject><subject>Protozoan Proteins - metabolism</subject><subject>Serine - metabolism</subject><subject>transport velocity</subject><subject>virulence factor</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUGL1TAQx4so7rp69yQ56qHPJE3S1IPweKgrPPCxruAtJOl0m6VtapI-8DP4pc2z66KCuYSZ-c8_mfkVxXOCNwTX7PWtsZurLSHNBuOGCfagOCdYVmXFydeHxTnGlJQN5fKseBLjLc6HNeRxcVYRKjkV_Lz4ceh9nHs_uhGSsyguJiaXluT8hHRCnyGUVYV8h1IPyPaDD_7b4iZAAaKLSU8WUAp6irMPCQI6dLur61y0flqNIKI2LDcn_ZxzOXQTOgw6jr51y4g6PVg367CMT4tHOYjw7O6-KL68f3e9uyz3nz583G33peVUprLDHaay7nClocaVNU1XW2mNodKAMISCYMYSjsEwSWQjQXBaU1q3AlecQ3VRvF1958WM0FqY8gCDmoMbdfiuvHbq78rkenXjj0rUuBFEZINXq0H_T9vldq9OOUxZ_lkljiRrX949dlocxKRGFy0Mg57AL1FRyhnHTLI6S_EqtcHHGKC79yZYnXirzFv94q1W3rnlxZ-j3Df8BpwFb1YB5IUeHQQVrYMMrXWZUVKtd_93_wmzWb4v</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Sanchez, Cecilia P.</creator><creator>Moliner Cubel, Sonia</creator><creator>Nyboer, Britta</creator><creator>Jankowska-Döllken, Monika</creator><creator>Schaeffer-Reiss, Christine</creator><creator>Ayoub, Daniel</creator><creator>Planelles, Gabrielle</creator><creator>Lanzer, Michael</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid></search><sort><creationdate>20190823</creationdate><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><author>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimalarials - pharmacology</topic><topic>Chloroquine - pharmacology</topic><topic>drug resistance</topic><topic>Drug Resistance - drug effects</topic><topic>drug transport</topic><topic>genome editing</topic><topic>kinase inhibitors</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Parasitic Sensitivity Tests</topic><topic>Parasitology</topic><topic>PfCRT</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - antagonists & inhibitors</topic><topic>Protozoan Proteins - metabolism</topic><topic>Serine - metabolism</topic><topic>transport velocity</topic><topic>virulence factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Cecilia P.</creatorcontrib><creatorcontrib>Moliner Cubel, Sonia</creatorcontrib><creatorcontrib>Nyboer, Britta</creatorcontrib><creatorcontrib>Jankowska-Döllken, Monika</creatorcontrib><creatorcontrib>Schaeffer-Reiss, Christine</creatorcontrib><creatorcontrib>Ayoub, Daniel</creatorcontrib><creatorcontrib>Planelles, Gabrielle</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Cecilia P.</au><au>Moliner Cubel, Sonia</au><au>Nyboer, Britta</au><au>Jankowska-Döllken, Monika</au><au>Schaeffer-Reiss, Christine</au><au>Ayoub, Daniel</au><au>Planelles, Gabrielle</au><au>Lanzer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>294</volume><issue>34</issue><spage>12766</spage><epage>12778</epage><pages>12766-12778</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31285265</pmid><doi>10.1074/jbc.RA119.009464</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12766-12778 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709616 |
source | ScienceDirect®; PubMed Central |
subjects | Antimalarials - pharmacology Chloroquine - pharmacology drug resistance Drug Resistance - drug effects drug transport genome editing kinase inhibitors Kinetics Life Sciences Membrane Transport Proteins - metabolism Microbiology Microbiology and Parasitology Parasitic Sensitivity Tests Parasitology PfCRT Pharmaceutical sciences Pharmacology Phosphorylation Plasmodium Plasmodium falciparum - drug effects Plasmodium falciparum - metabolism Protozoan Proteins - antagonists & inhibitors Protozoan Proteins - metabolism Serine - metabolism transport velocity virulence factor |
title | Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphomimetic%20substitution%20at%20Ser-33%20of%20the%20chloroquine%20resistance%20transporter%20PfCRT%20reconstitutes%20drug%20responses%20in%20Plasmodium%20falciparum&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sanchez,%20Cecilia%20P.&rft.date=2019-08-23&rft.volume=294&rft.issue=34&rft.spage=12766&rft.epage=12778&rft.pages=12766-12778&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.009464&rft_dat=%3Cproquest_pubme%3E2254504847%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254504847&rft_id=info:pmid/31285265&rfr_iscdi=true |