Loading…

Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum

The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally mod...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2019-08, Vol.294 (34), p.12766-12778
Main Authors: Sanchez, Cecilia P., Moliner Cubel, Sonia, Nyboer, Britta, Jankowska-Döllken, Monika, Schaeffer-Reiss, Christine, Ayoub, Daniel, Planelles, Gabrielle, Lanzer, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3
cites cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3
container_end_page 12778
container_issue 34
container_start_page 12766
container_title The Journal of biological chemistry
container_volume 294
creator Sanchez, Cecilia P.
Moliner Cubel, Sonia
Nyboer, Britta
Jankowska-Döllken, Monika
Schaeffer-Reiss, Christine
Ayoub, Daniel
Planelles, Gabrielle
Lanzer, Michael
description The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.
doi_str_mv 10.1074/jbc.RA119.009464
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820303094</els_id><sourcerecordid>2254504847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</originalsourceid><addsrcrecordid>eNp1kUGL1TAQx4so7rp69yQ56qHPJE3S1IPweKgrPPCxruAtJOl0m6VtapI-8DP4pc2z66KCuYSZ-c8_mfkVxXOCNwTX7PWtsZurLSHNBuOGCfagOCdYVmXFydeHxTnGlJQN5fKseBLjLc6HNeRxcVYRKjkV_Lz4ceh9nHs_uhGSsyguJiaXluT8hHRCnyGUVYV8h1IPyPaDD_7b4iZAAaKLSU8WUAp6irMPCQI6dLur61y0flqNIKI2LDcn_ZxzOXQTOgw6jr51y4g6PVg367CMT4tHOYjw7O6-KL68f3e9uyz3nz583G33peVUprLDHaay7nClocaVNU1XW2mNodKAMISCYMYSjsEwSWQjQXBaU1q3AlecQ3VRvF1958WM0FqY8gCDmoMbdfiuvHbq78rkenXjj0rUuBFEZINXq0H_T9vldq9OOUxZ_lkljiRrX949dlocxKRGFy0Mg57AL1FRyhnHTLI6S_EqtcHHGKC79yZYnXirzFv94q1W3rnlxZ-j3Df8BpwFb1YB5IUeHQQVrYMMrXWZUVKtd_93_wmzWb4v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254504847</pqid></control><display><type>article</type><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</creator><creatorcontrib>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</creatorcontrib><description>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.009464</identifier><identifier>PMID: 31285265</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antimalarials - pharmacology ; Chloroquine - pharmacology ; drug resistance ; Drug Resistance - drug effects ; drug transport ; genome editing ; kinase inhibitors ; Kinetics ; Life Sciences ; Membrane Transport Proteins - metabolism ; Microbiology ; Microbiology and Parasitology ; Parasitic Sensitivity Tests ; Parasitology ; PfCRT ; Pharmaceutical sciences ; Pharmacology ; Phosphorylation ; Plasmodium ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - metabolism ; Protozoan Proteins - antagonists &amp; inhibitors ; Protozoan Proteins - metabolism ; Serine - metabolism ; transport velocity ; virulence factor</subject><ispartof>The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12766-12778</ispartof><rights>2019 © 2019 Sanchez et al.</rights><rights>2019 Sanchez et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 Sanchez et al. 2019 Sanchez et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</citedby><cites>FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</cites><orcidid>0000-0002-0220-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709616/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820303094$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31285265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02470336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Cecilia P.</creatorcontrib><creatorcontrib>Moliner Cubel, Sonia</creatorcontrib><creatorcontrib>Nyboer, Britta</creatorcontrib><creatorcontrib>Jankowska-Döllken, Monika</creatorcontrib><creatorcontrib>Schaeffer-Reiss, Christine</creatorcontrib><creatorcontrib>Ayoub, Daniel</creatorcontrib><creatorcontrib>Planelles, Gabrielle</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</description><subject>Antimalarials - pharmacology</subject><subject>Chloroquine - pharmacology</subject><subject>drug resistance</subject><subject>Drug Resistance - drug effects</subject><subject>drug transport</subject><subject>genome editing</subject><subject>kinase inhibitors</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Parasitic Sensitivity Tests</subject><subject>Parasitology</subject><subject>PfCRT</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - antagonists &amp; inhibitors</subject><subject>Protozoan Proteins - metabolism</subject><subject>Serine - metabolism</subject><subject>transport velocity</subject><subject>virulence factor</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUGL1TAQx4so7rp69yQ56qHPJE3S1IPweKgrPPCxruAtJOl0m6VtapI-8DP4pc2z66KCuYSZ-c8_mfkVxXOCNwTX7PWtsZurLSHNBuOGCfagOCdYVmXFydeHxTnGlJQN5fKseBLjLc6HNeRxcVYRKjkV_Lz4ceh9nHs_uhGSsyguJiaXluT8hHRCnyGUVYV8h1IPyPaDD_7b4iZAAaKLSU8WUAp6irMPCQI6dLur61y0flqNIKI2LDcn_ZxzOXQTOgw6jr51y4g6PVg367CMT4tHOYjw7O6-KL68f3e9uyz3nz583G33peVUprLDHaay7nClocaVNU1XW2mNodKAMISCYMYSjsEwSWQjQXBaU1q3AlecQ3VRvF1958WM0FqY8gCDmoMbdfiuvHbq78rkenXjj0rUuBFEZINXq0H_T9vldq9OOUxZ_lkljiRrX949dlocxKRGFy0Mg57AL1FRyhnHTLI6S_EqtcHHGKC79yZYnXirzFv94q1W3rnlxZ-j3Df8BpwFb1YB5IUeHQQVrYMMrXWZUVKtd_93_wmzWb4v</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Sanchez, Cecilia P.</creator><creator>Moliner Cubel, Sonia</creator><creator>Nyboer, Britta</creator><creator>Jankowska-Döllken, Monika</creator><creator>Schaeffer-Reiss, Christine</creator><creator>Ayoub, Daniel</creator><creator>Planelles, Gabrielle</creator><creator>Lanzer, Michael</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid></search><sort><creationdate>20190823</creationdate><title>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</title><author>Sanchez, Cecilia P. ; Moliner Cubel, Sonia ; Nyboer, Britta ; Jankowska-Döllken, Monika ; Schaeffer-Reiss, Christine ; Ayoub, Daniel ; Planelles, Gabrielle ; Lanzer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimalarials - pharmacology</topic><topic>Chloroquine - pharmacology</topic><topic>drug resistance</topic><topic>Drug Resistance - drug effects</topic><topic>drug transport</topic><topic>genome editing</topic><topic>kinase inhibitors</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Parasitic Sensitivity Tests</topic><topic>Parasitology</topic><topic>PfCRT</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - antagonists &amp; inhibitors</topic><topic>Protozoan Proteins - metabolism</topic><topic>Serine - metabolism</topic><topic>transport velocity</topic><topic>virulence factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Cecilia P.</creatorcontrib><creatorcontrib>Moliner Cubel, Sonia</creatorcontrib><creatorcontrib>Nyboer, Britta</creatorcontrib><creatorcontrib>Jankowska-Döllken, Monika</creatorcontrib><creatorcontrib>Schaeffer-Reiss, Christine</creatorcontrib><creatorcontrib>Ayoub, Daniel</creatorcontrib><creatorcontrib>Planelles, Gabrielle</creatorcontrib><creatorcontrib>Lanzer, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Cecilia P.</au><au>Moliner Cubel, Sonia</au><au>Nyboer, Britta</au><au>Jankowska-Döllken, Monika</au><au>Schaeffer-Reiss, Christine</au><au>Ayoub, Daniel</au><au>Planelles, Gabrielle</au><au>Lanzer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>294</volume><issue>34</issue><spage>12766</spage><epage>12778</epage><pages>12766-12778</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance–conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31285265</pmid><doi>10.1074/jbc.RA119.009464</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0220-6526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-08, Vol.294 (34), p.12766-12778
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6709616
source ScienceDirect®; PubMed Central
subjects Antimalarials - pharmacology
Chloroquine - pharmacology
drug resistance
Drug Resistance - drug effects
drug transport
genome editing
kinase inhibitors
Kinetics
Life Sciences
Membrane Transport Proteins - metabolism
Microbiology
Microbiology and Parasitology
Parasitic Sensitivity Tests
Parasitology
PfCRT
Pharmaceutical sciences
Pharmacology
Phosphorylation
Plasmodium
Plasmodium falciparum - drug effects
Plasmodium falciparum - metabolism
Protozoan Proteins - antagonists & inhibitors
Protozoan Proteins - metabolism
Serine - metabolism
transport velocity
virulence factor
title Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphomimetic%20substitution%20at%20Ser-33%20of%20the%20chloroquine%20resistance%20transporter%20PfCRT%20reconstitutes%20drug%20responses%20in%20Plasmodium%20falciparum&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sanchez,%20Cecilia%20P.&rft.date=2019-08-23&rft.volume=294&rft.issue=34&rft.spage=12766&rft.epage=12778&rft.pages=12766-12778&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.009464&rft_dat=%3Cproquest_pubme%3E2254504847%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-f0f0287f03ae703cb9f7c8cbb28be6b12e64bc150eb481898e6527227d60355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2254504847&rft_id=info:pmid/31285265&rfr_iscdi=true