Loading…

A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators

In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were inv...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2019-08, Vol.12 (16), p.2511
Main Authors: Justeau, Camille, Slimani Tlemcani, Taoufik, Poulin-Vittrant, Guylaine, Nadaud, Kevin, Alquier, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783
cites cdi_FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783
container_end_page
container_issue 16
container_start_page 2511
container_title Materials
container_volume 12
creator Justeau, Camille
Slimani Tlemcani, Taoufik
Poulin-Vittrant, Guylaine
Nadaud, Kevin
Alquier, Daniel
description In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (V ) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.
doi_str_mv 10.3390/ma12162511
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548725296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783</originalsourceid><addsrcrecordid>eNpdks1u1DAQxyMEolXphQdAlrgAIuDPxL4ghVWhSCu2UuHSi-V4x91UG3uxk0XbF-hr47BtKfVlLM9v_jOemaJ4SfAHxhT-2BtCSUUFIU-KQ6JUVRLF-dMH94PiOKUrnA9jRFL1vDhghCkuMT4sbho0C_3GRDN0W0Dnw7jcoeDRsAJ04hzYIaHgUDO-Rxd-gYxfouZigc4BlmhudhDTHX0G0YXYG29hipjo78aH312E8rNJmT_r4DrAOmvGzv51XoKHnDnE9KJ45sw6wfGtPSp-fjn5MTst54uv32bNvLSc46FsMeWOtYZJJbkQhgG30mGpWteSSoiKWCGschJz7qhrLYOaKiXbCoCzWrKj4tNedzO2PSwt-CGatd7Erjdxp4Pp9P8e3630ZdjqqqaYVjQLvN0LrB6FnTZzPb1hmotTrNqSzL65TRbDrxHSoPsuWVivjYcwJk1pPU2FcpHR14_QqzBGn1uhqeCypoKqKlPv9pSNIaUI7r4CgvW0DvrfOmT41cOv3qN3w2d_AGierlc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548725296</pqid></control><display><type>article</type><title>A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Justeau, Camille ; Slimani Tlemcani, Taoufik ; Poulin-Vittrant, Guylaine ; Nadaud, Kevin ; Alquier, Daniel</creator><creatorcontrib>Justeau, Camille ; Slimani Tlemcani, Taoufik ; Poulin-Vittrant, Guylaine ; Nadaud, Kevin ; Alquier, Daniel</creatorcontrib><description>In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (V ) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma12162511</identifier><identifier>PMID: 31394800</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aluminum ; Comparative studies ; Electric power ; Electrodes ; Energy harvesting ; Energy resources ; Engineering Sciences ; Hydrothermal crystal growth ; Industrial applications ; Interfacial bonding ; Low temperature ; Micro and nanotechnologies ; Microelectronics ; Nanogenerators ; Nanowires ; Open circuit voltage ; Piezoelectricity ; Polydimethylsiloxane ; Polymer matrix composites ; Polymers ; Zinc oxide ; Zinc oxides</subject><ispartof>Materials, 2019-08, Vol.12 (16), p.2511</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783</citedby><cites>FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783</cites><orcidid>0000-0002-2969-1453 ; 0000-0003-1345-8195 ; 0000-0003-0501-8122 ; 0000-0001-5296-1303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548725296/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548725296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31394800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02389936$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Justeau, Camille</creatorcontrib><creatorcontrib>Slimani Tlemcani, Taoufik</creatorcontrib><creatorcontrib>Poulin-Vittrant, Guylaine</creatorcontrib><creatorcontrib>Nadaud, Kevin</creatorcontrib><creatorcontrib>Alquier, Daniel</creatorcontrib><title>A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (V ) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.</description><subject>Aluminum</subject><subject>Comparative studies</subject><subject>Electric power</subject><subject>Electrodes</subject><subject>Energy harvesting</subject><subject>Energy resources</subject><subject>Engineering Sciences</subject><subject>Hydrothermal crystal growth</subject><subject>Industrial applications</subject><subject>Interfacial bonding</subject><subject>Low temperature</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nanogenerators</subject><subject>Nanowires</subject><subject>Open circuit voltage</subject><subject>Piezoelectricity</subject><subject>Polydimethylsiloxane</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdks1u1DAQxyMEolXphQdAlrgAIuDPxL4ghVWhSCu2UuHSi-V4x91UG3uxk0XbF-hr47BtKfVlLM9v_jOemaJ4SfAHxhT-2BtCSUUFIU-KQ6JUVRLF-dMH94PiOKUrnA9jRFL1vDhghCkuMT4sbho0C_3GRDN0W0Dnw7jcoeDRsAJ04hzYIaHgUDO-Rxd-gYxfouZigc4BlmhudhDTHX0G0YXYG29hipjo78aH312E8rNJmT_r4DrAOmvGzv51XoKHnDnE9KJ45sw6wfGtPSp-fjn5MTst54uv32bNvLSc46FsMeWOtYZJJbkQhgG30mGpWteSSoiKWCGschJz7qhrLYOaKiXbCoCzWrKj4tNedzO2PSwt-CGatd7Erjdxp4Pp9P8e3630ZdjqqqaYVjQLvN0LrB6FnTZzPb1hmotTrNqSzL65TRbDrxHSoPsuWVivjYcwJk1pPU2FcpHR14_QqzBGn1uhqeCypoKqKlPv9pSNIaUI7r4CgvW0DvrfOmT41cOv3qN3w2d_AGierlc</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>Justeau, Camille</creator><creator>Slimani Tlemcani, Taoufik</creator><creator>Poulin-Vittrant, Guylaine</creator><creator>Nadaud, Kevin</creator><creator>Alquier, Daniel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2969-1453</orcidid><orcidid>https://orcid.org/0000-0003-1345-8195</orcidid><orcidid>https://orcid.org/0000-0003-0501-8122</orcidid><orcidid>https://orcid.org/0000-0001-5296-1303</orcidid></search><sort><creationdate>20190807</creationdate><title>A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators</title><author>Justeau, Camille ; Slimani Tlemcani, Taoufik ; Poulin-Vittrant, Guylaine ; Nadaud, Kevin ; Alquier, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Comparative studies</topic><topic>Electric power</topic><topic>Electrodes</topic><topic>Energy harvesting</topic><topic>Energy resources</topic><topic>Engineering Sciences</topic><topic>Hydrothermal crystal growth</topic><topic>Industrial applications</topic><topic>Interfacial bonding</topic><topic>Low temperature</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nanogenerators</topic><topic>Nanowires</topic><topic>Open circuit voltage</topic><topic>Piezoelectricity</topic><topic>Polydimethylsiloxane</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Justeau, Camille</creatorcontrib><creatorcontrib>Slimani Tlemcani, Taoufik</creatorcontrib><creatorcontrib>Poulin-Vittrant, Guylaine</creatorcontrib><creatorcontrib>Nadaud, Kevin</creatorcontrib><creatorcontrib>Alquier, Daniel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Justeau, Camille</au><au>Slimani Tlemcani, Taoufik</au><au>Poulin-Vittrant, Guylaine</au><au>Nadaud, Kevin</au><au>Alquier, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2019-08-07</date><risdate>2019</risdate><volume>12</volume><issue>16</issue><spage>2511</spage><pages>2511-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (V ) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31394800</pmid><doi>10.3390/ma12162511</doi><orcidid>https://orcid.org/0000-0002-2969-1453</orcidid><orcidid>https://orcid.org/0000-0003-1345-8195</orcidid><orcidid>https://orcid.org/0000-0003-0501-8122</orcidid><orcidid>https://orcid.org/0000-0001-5296-1303</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2019-08, Vol.12 (16), p.2511
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6720262
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Aluminum
Comparative studies
Electric power
Electrodes
Energy harvesting
Energy resources
Engineering Sciences
Hydrothermal crystal growth
Industrial applications
Interfacial bonding
Low temperature
Micro and nanotechnologies
Microelectronics
Nanogenerators
Nanowires
Open circuit voltage
Piezoelectricity
Polydimethylsiloxane
Polymer matrix composites
Polymers
Zinc oxide
Zinc oxides
title A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Study%20on%20the%20Effects%20of%20Au,%20ZnO%20and%20AZO%20Seed%20Layers%20on%20the%20Performance%20of%20ZnO%20Nanowire-Based%20Piezoelectric%20Nanogenerators&rft.jtitle=Materials&rft.au=Justeau,%20Camille&rft.date=2019-08-07&rft.volume=12&rft.issue=16&rft.spage=2511&rft.pages=2511-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma12162511&rft_dat=%3Cproquest_pubme%3E2548725296%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-b024f3ba3898455a3e4c8f089bfb165561c55c9f8044f2fbc3e72998b6ee43783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548725296&rft_id=info:pmid/31394800&rfr_iscdi=true