Loading…
Tissue‐engineered 3D microvessel and capillary network models for the study of vascular phenomena
Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (...
Saved in:
Published in: | Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2017-07, Vol.24 (5), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation. |
---|---|
ISSN: | 1073-9688 1549-8719 |
DOI: | 10.1111/micc.12360 |