Loading…
Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus
Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-we...
Saved in:
Published in: | The Journal of neuroscience 2004-08, Vol.24 (31), p.6920-6927 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3 |
container_end_page | 6927 |
container_issue | 31 |
container_start_page | 6920 |
container_title | The Journal of neuroscience |
container_volume | 24 |
creator | Angulo, Maria Cecilia Kozlov, Andrei S Charpak, Serge Audinat, Etienne |
description | Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by |
doi_str_mv | 10.1523/JNEUROSCI.0473-04.2004 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66760575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYmiReOk_YVAqxZdyB0-RFqbAoaR2gmMBEjqNUFT44gF9ago2XC_vhRspI9NNyTBe-ZyhpeQawpTmjH--e7-ZvP48LS4nYJQPAUxZQDiFZlENU-ZAPqaTIApSKVQ4oJchvAdABRQ9ZZcjFAW1QnZLP3Qm8r0mDyiRxOwSHZdUyVL74xPFuh9SJ6OtS27pnY_MST3OMRj1Oa2d3vXHxNXJ32Jycq1bWNN1Q7hHXmzMz7g-_N-RTZfb74tVun6YXm7mK9TK5nsU8H5Nuc09sK2ItsKZsAoa3bIoyKsETjLwNJM0BmoAgopc0AhMc8LJY0o-BX5cvJth22FhcW674zXbecq0x11Y5z-W6ldqZ-bvZaK5ZLSaPDpZFD-U7aar_V4B0wIKiTfj-yH82Nd82PA0OvKBRs_yNTYDEFLqSRkKvsvSNUso0rKCMoTaLsmhA53Ly1Q0GPM-iVmPcYcFz3GHAuv_5z7d9k51wh8PM_lnsuD61CHyngfcaoPhwMTmlMtcwb8F4o6scA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17851766</pqid></control><display><type>article</type><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><source>Open Access: PubMed Central</source><creator>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</creator><creatorcontrib>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</creatorcontrib><description>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by <100 microm. The degree of precision (<100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0473-04.2004</identifier><identifier>PMID: 15295027</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amino Acid Transport System X-AG ; Animals ; Astrocytes - physiology ; Cellular/Molecular ; Glutamic Acid - physiology ; Hippocampus - physiology ; Humans ; In Vitro Techniques ; Life Sciences ; Neuroglia - physiology ; Neurons and Cognition ; Pyramidal Cells - physiology ; Rats ; Receptors, N-Methyl-D-Aspartate ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2004-08, Vol.24 (31), p.6920-6927</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2004 Society for Neuroscience 0270-6474/04/246920-08.00/0 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</citedby><cites>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</cites><orcidid>0000-0002-6389-422X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729611/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729611/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15295027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02441463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Angulo, Maria Cecilia</creatorcontrib><creatorcontrib>Kozlov, Andrei S</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by <100 microm. The degree of precision (<100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</description><subject>Amino Acid Transport System X-AG</subject><subject>Animals</subject><subject>Astrocytes - physiology</subject><subject>Cellular/Molecular</subject><subject>Glutamic Acid - physiology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Life Sciences</subject><subject>Neuroglia - physiology</subject><subject>Neurons and Cognition</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Receptors, N-Methyl-D-Aspartate</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYmiReOk_YVAqxZdyB0-RFqbAoaR2gmMBEjqNUFT44gF9ago2XC_vhRspI9NNyTBe-ZyhpeQawpTmjH--e7-ZvP48LS4nYJQPAUxZQDiFZlENU-ZAPqaTIApSKVQ4oJchvAdABRQ9ZZcjFAW1QnZLP3Qm8r0mDyiRxOwSHZdUyVL74xPFuh9SJ6OtS27pnY_MST3OMRj1Oa2d3vXHxNXJ32Jycq1bWNN1Q7hHXmzMz7g-_N-RTZfb74tVun6YXm7mK9TK5nsU8H5Nuc09sK2ItsKZsAoa3bIoyKsETjLwNJM0BmoAgopc0AhMc8LJY0o-BX5cvJth22FhcW674zXbecq0x11Y5z-W6ldqZ-bvZaK5ZLSaPDpZFD-U7aar_V4B0wIKiTfj-yH82Nd82PA0OvKBRs_yNTYDEFLqSRkKvsvSNUso0rKCMoTaLsmhA53Ly1Q0GPM-iVmPcYcFz3GHAuv_5z7d9k51wh8PM_lnsuD61CHyngfcaoPhwMTmlMtcwb8F4o6scA</recordid><startdate>20040804</startdate><enddate>20040804</enddate><creator>Angulo, Maria Cecilia</creator><creator>Kozlov, Andrei S</creator><creator>Charpak, Serge</creator><creator>Audinat, Etienne</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid></search><sort><creationdate>20040804</creationdate><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><author>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Transport System X-AG</topic><topic>Animals</topic><topic>Astrocytes - physiology</topic><topic>Cellular/Molecular</topic><topic>Glutamic Acid - physiology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Life Sciences</topic><topic>Neuroglia - physiology</topic><topic>Neurons and Cognition</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Receptors, N-Methyl-D-Aspartate</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angulo, Maria Cecilia</creatorcontrib><creatorcontrib>Kozlov, Andrei S</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angulo, Maria Cecilia</au><au>Kozlov, Andrei S</au><au>Charpak, Serge</au><au>Audinat, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2004-08-04</date><risdate>2004</risdate><volume>24</volume><issue>31</issue><spage>6920</spage><epage>6927</epage><pages>6920-6927</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by <100 microm. The degree of precision (<100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15295027</pmid><doi>10.1523/JNEUROSCI.0473-04.2004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2004-08, Vol.24 (31), p.6920-6927 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729611 |
source | Open Access: PubMed Central |
subjects | Amino Acid Transport System X-AG Animals Astrocytes - physiology Cellular/Molecular Glutamic Acid - physiology Hippocampus - physiology Humans In Vitro Techniques Life Sciences Neuroglia - physiology Neurons and Cognition Pyramidal Cells - physiology Rats Receptors, N-Methyl-D-Aspartate Synaptic Transmission - physiology |
title | Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamate%20Released%20from%20Glial%20Cells%20Synchronizes%20Neuronal%20Activity%20in%20the%20Hippocampus&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Angulo,%20Maria%20Cecilia&rft.date=2004-08-04&rft.volume=24&rft.issue=31&rft.spage=6920&rft.epage=6927&rft.pages=6920-6927&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0473-04.2004&rft_dat=%3Cproquest_pubme%3E66760575%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17851766&rft_id=info:pmid/15295027&rfr_iscdi=true |