Loading…

Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus

Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-we...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2004-08, Vol.24 (31), p.6920-6927
Main Authors: Angulo, Maria Cecilia, Kozlov, Andrei S, Charpak, Serge, Audinat, Etienne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3
cites cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3
container_end_page 6927
container_issue 31
container_start_page 6920
container_title The Journal of neuroscience
container_volume 24
creator Angulo, Maria Cecilia
Kozlov, Andrei S
Charpak, Serge
Audinat, Etienne
description Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by
doi_str_mv 10.1523/JNEUROSCI.0473-04.2004
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66760575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYmiReOk_YVAqxZdyB0-RFqbAoaR2gmMBEjqNUFT44gF9ago2XC_vhRspI9NNyTBe-ZyhpeQawpTmjH--e7-ZvP48LS4nYJQPAUxZQDiFZlENU-ZAPqaTIApSKVQ4oJchvAdABRQ9ZZcjFAW1QnZLP3Qm8r0mDyiRxOwSHZdUyVL74xPFuh9SJ6OtS27pnY_MST3OMRj1Oa2d3vXHxNXJ32Jycq1bWNN1Q7hHXmzMz7g-_N-RTZfb74tVun6YXm7mK9TK5nsU8H5Nuc09sK2ItsKZsAoa3bIoyKsETjLwNJM0BmoAgopc0AhMc8LJY0o-BX5cvJth22FhcW674zXbecq0x11Y5z-W6ldqZ-bvZaK5ZLSaPDpZFD-U7aar_V4B0wIKiTfj-yH82Nd82PA0OvKBRs_yNTYDEFLqSRkKvsvSNUso0rKCMoTaLsmhA53Ly1Q0GPM-iVmPcYcFz3GHAuv_5z7d9k51wh8PM_lnsuD61CHyngfcaoPhwMTmlMtcwb8F4o6scA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17851766</pqid></control><display><type>article</type><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><source>Open Access: PubMed Central</source><creator>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</creator><creatorcontrib>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</creatorcontrib><description>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by &lt;100 microm. The degree of precision (&lt;100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0473-04.2004</identifier><identifier>PMID: 15295027</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amino Acid Transport System X-AG ; Animals ; Astrocytes - physiology ; Cellular/Molecular ; Glutamic Acid - physiology ; Hippocampus - physiology ; Humans ; In Vitro Techniques ; Life Sciences ; Neuroglia - physiology ; Neurons and Cognition ; Pyramidal Cells - physiology ; Rats ; Receptors, N-Methyl-D-Aspartate ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2004-08, Vol.24 (31), p.6920-6927</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2004 Society for Neuroscience 0270-6474/04/246920-08.00/0 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</citedby><cites>FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</cites><orcidid>0000-0002-6389-422X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729611/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729611/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15295027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02441463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Angulo, Maria Cecilia</creatorcontrib><creatorcontrib>Kozlov, Andrei S</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by &lt;100 microm. The degree of precision (&lt;100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</description><subject>Amino Acid Transport System X-AG</subject><subject>Animals</subject><subject>Astrocytes - physiology</subject><subject>Cellular/Molecular</subject><subject>Glutamic Acid - physiology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Life Sciences</subject><subject>Neuroglia - physiology</subject><subject>Neurons and Cognition</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Receptors, N-Methyl-D-Aspartate</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkctu2zAQRYmiReOk_YVAqxZdyB0-RFqbAoaR2gmMBEjqNUFT44gF9ago2XC_vhRspI9NNyTBe-ZyhpeQawpTmjH--e7-ZvP48LS4nYJQPAUxZQDiFZlENU-ZAPqaTIApSKVQ4oJchvAdABRQ9ZZcjFAW1QnZLP3Qm8r0mDyiRxOwSHZdUyVL74xPFuh9SJ6OtS27pnY_MST3OMRj1Oa2d3vXHxNXJ32Jycq1bWNN1Q7hHXmzMz7g-_N-RTZfb74tVun6YXm7mK9TK5nsU8H5Nuc09sK2ItsKZsAoa3bIoyKsETjLwNJM0BmoAgopc0AhMc8LJY0o-BX5cvJth22FhcW674zXbecq0x11Y5z-W6ldqZ-bvZaK5ZLSaPDpZFD-U7aar_V4B0wIKiTfj-yH82Nd82PA0OvKBRs_yNTYDEFLqSRkKvsvSNUso0rKCMoTaLsmhA53Ly1Q0GPM-iVmPcYcFz3GHAuv_5z7d9k51wh8PM_lnsuD61CHyngfcaoPhwMTmlMtcwb8F4o6scA</recordid><startdate>20040804</startdate><enddate>20040804</enddate><creator>Angulo, Maria Cecilia</creator><creator>Kozlov, Andrei S</creator><creator>Charpak, Serge</creator><creator>Audinat, Etienne</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid></search><sort><creationdate>20040804</creationdate><title>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</title><author>Angulo, Maria Cecilia ; Kozlov, Andrei S ; Charpak, Serge ; Audinat, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Transport System X-AG</topic><topic>Animals</topic><topic>Astrocytes - physiology</topic><topic>Cellular/Molecular</topic><topic>Glutamic Acid - physiology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Life Sciences</topic><topic>Neuroglia - physiology</topic><topic>Neurons and Cognition</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Receptors, N-Methyl-D-Aspartate</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angulo, Maria Cecilia</creatorcontrib><creatorcontrib>Kozlov, Andrei S</creatorcontrib><creatorcontrib>Charpak, Serge</creatorcontrib><creatorcontrib>Audinat, Etienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angulo, Maria Cecilia</au><au>Kozlov, Andrei S</au><au>Charpak, Serge</au><au>Audinat, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2004-08-04</date><risdate>2004</risdate><volume>24</volume><issue>31</issue><spage>6920</spage><epage>6927</epage><pages>6920-6927</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Glial cells of the nervous system directly influence neuronal and synaptic activities by releasing transmitters. However, the physiological consequences of this glial transmitter release on brain information processing remain poorly understood. We demonstrate here in hippocampal slices of 2- to 5-week-old rats that glutamate released from glial cells generates slow transient currents (STCs) mediated by the activation of NMDA receptors in pyramidal cells. STCs persist in the absence of neuronal and synaptic activity, indicating a nonsynaptic origin of the source of glutamate. Indeed, STCs occur spontaneously but can also be induced by pharmacological tools known to activate astrocytes and by the selective mechanical stimulation of single nearby glial cells. Bath application of the inhibitor of the glutamate uptake dl-threo-beta-benzyloxyaspartate increases both the frequency of STCs and the amplitude of a tonic conductance mediated by NMDA receptors and probably also originated from glial glutamate release. By using dual recordings, we observed synchronized STCs in pyramidal cells having their soma distant by &lt;100 microm. The degree of precision (&lt;100 msec) of this synchronization rules out the involvement of calcium waves spreading through the glial network. It also indicates that single glial cells release glutamate onto adjacent neuronal processes, thereby controlling simultaneously the excitability of several neighboring pyramidal cells. In conclusion, our results show that the glial glutamate release occurs spontaneously and synchronizes the neuronal activity in the hippocampus.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15295027</pmid><doi>10.1523/JNEUROSCI.0473-04.2004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6389-422X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2004-08, Vol.24 (31), p.6920-6927
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6729611
source Open Access: PubMed Central
subjects Amino Acid Transport System X-AG
Animals
Astrocytes - physiology
Cellular/Molecular
Glutamic Acid - physiology
Hippocampus - physiology
Humans
In Vitro Techniques
Life Sciences
Neuroglia - physiology
Neurons and Cognition
Pyramidal Cells - physiology
Rats
Receptors, N-Methyl-D-Aspartate
Synaptic Transmission - physiology
title Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutamate%20Released%20from%20Glial%20Cells%20Synchronizes%20Neuronal%20Activity%20in%20the%20Hippocampus&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Angulo,%20Maria%20Cecilia&rft.date=2004-08-04&rft.volume=24&rft.issue=31&rft.spage=6920&rft.epage=6927&rft.pages=6920-6927&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0473-04.2004&rft_dat=%3Cproquest_pubme%3E66760575%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626t-433b9312952b45b42a0a7cafe34334ca4e850c1541807d0d6690e46e99d76a4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17851766&rft_id=info:pmid/15295027&rfr_iscdi=true