Loading…

Contribution of Calcium Ions to P2X Channel Responses

Ca2+ entry through transmitter-gated cation channels, including ATP-gated P2X channels, contributes to an array of physiological processes in excitable and non-excitable cells, but the absolute amount of Ca2+ flowing through P2X channels is unknown. Here we address the issue of precisely how much Ca...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2004-03, Vol.24 (13), p.3413-3420
Main Authors: Egan, Terrance M, Khakh, Baljit S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3
cites cdi_FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3
container_end_page 3420
container_issue 13
container_start_page 3413
container_title The Journal of neuroscience
container_volume 24
creator Egan, Terrance M
Khakh, Baljit S
description Ca2+ entry through transmitter-gated cation channels, including ATP-gated P2X channels, contributes to an array of physiological processes in excitable and non-excitable cells, but the absolute amount of Ca2+ flowing through P2X channels is unknown. Here we address the issue of precisely how much Ca2+ flows through P2X channels and report the finding that the ATP-gated P2X channel family has remarkably high Ca2+ flux compared with other channels gated by the transmitters ACh, serotonin, protons, and glutamate. Several homomeric and heteromeric P2X channels display fractional Ca2+ currents equivalent to NMDA channels, which hitherto have been thought of as the largest source of transmitter-activated Ca2+ flux. We further suggest that NMDA and P2X channels may use different mechanisms to promote Ca2+ flux across membranes. We find that mutating three critical polar amino acids decreases the Ca2+ flux of P2X2 receptors, suggesting that these residues cluster to form a novel type of Ca2+ selectivity region within the pore. Overall, our data identify P2X channels as a large source of transmitter-activated Ca2+ influx at resting membrane potentials and support the hypothesis that polar amino acids contribute to Ca2+ selection in an ATP-gated ion channel.
doi_str_mv 10.1523/JNEUROSCI.5429-03.2004
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17941179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3</originalsourceid><addsrcrecordid>eNpVkFFr2zAQx8XoaLOuX6H4aX1ydqeTpehlUEy7ZpR1dC30TciO3GjYVmrZC_v2VUjotpcT3P3ur-PH2DnCHAtOn799v3q8v_tZLueF4DoHmnMA8Y7N0lTnXAAesRlwBbkUSpywDzH-AgAFqI7ZCRZQSMVxxooy9OPgq2n0oc9Ck5W2rf3UZcvQx2wM2Q_-lJVr2_euze5d3KS2ix_Z-8a20Z0d3lP2eH31UN7kt3dfl-XlbV4XpMdcVKBdUUnkRLKuVL3gYrHiirSokWRBCldKUWUlx5WUTggtsdELXFAltGvolH3Z526mqnOr2qVbbWs2g-_s8McE683_k96vzXP4baQiAJIp4NMhYAgvk4uj6XysXdva3oUpGlRaYCoJlHuwHkKMg2vePkEwO-PmzbjZGTdAZmc8LZ7_e-LftYPiBFzsgbV_Xm_94EzsbNsmHM12u-XCIBkSSPQK5seJoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17941179</pqid></control><display><type>article</type><title>Contribution of Calcium Ions to P2X Channel Responses</title><source>PubMed Central</source><creator>Egan, Terrance M ; Khakh, Baljit S</creator><creatorcontrib>Egan, Terrance M ; Khakh, Baljit S</creatorcontrib><description>Ca2+ entry through transmitter-gated cation channels, including ATP-gated P2X channels, contributes to an array of physiological processes in excitable and non-excitable cells, but the absolute amount of Ca2+ flowing through P2X channels is unknown. Here we address the issue of precisely how much Ca2+ flows through P2X channels and report the finding that the ATP-gated P2X channel family has remarkably high Ca2+ flux compared with other channels gated by the transmitters ACh, serotonin, protons, and glutamate. Several homomeric and heteromeric P2X channels display fractional Ca2+ currents equivalent to NMDA channels, which hitherto have been thought of as the largest source of transmitter-activated Ca2+ flux. We further suggest that NMDA and P2X channels may use different mechanisms to promote Ca2+ flux across membranes. We find that mutating three critical polar amino acids decreases the Ca2+ flux of P2X2 receptors, suggesting that these residues cluster to form a novel type of Ca2+ selectivity region within the pore. Overall, our data identify P2X channels as a large source of transmitter-activated Ca2+ influx at resting membrane potentials and support the hypothesis that polar amino acids contribute to Ca2+ selection in an ATP-gated ion channel.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5429-03.2004</identifier><identifier>PMID: 15056721</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - pharmacology ; Amino Acid Substitution - genetics ; Animals ; Calcium - metabolism ; Cell Line ; Cellular/Molecular ; Glutamic Acid - metabolism ; Humans ; Ion Channel Gating - drug effects ; Ion Channel Gating - genetics ; Ion Channel Gating - physiology ; Ion Channels - drug effects ; Ion Channels - genetics ; Ion Channels - metabolism ; Kidney - cytology ; Kidney - metabolism ; Membrane Potentials - physiology ; Mutagenesis, Site-Directed ; Neurotransmitter Agents - metabolism ; Neurotransmitter Agents - pharmacology ; Patch-Clamp Techniques ; Rats ; Receptors, Purinergic P2 - genetics ; Receptors, Purinergic P2 - metabolism ; Receptors, Purinergic P2X ; Receptors, Purinergic P2X2 ; Receptors, Purinergic P2X4 ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>The Journal of neuroscience, 2004-03, Vol.24 (13), p.3413-3420</ispartof><rights>Copyright © 2004 Society for Neuroscience 0270-6474/04/243413-08.00/0 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3</citedby><cites>FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730036/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730036/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15056721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egan, Terrance M</creatorcontrib><creatorcontrib>Khakh, Baljit S</creatorcontrib><title>Contribution of Calcium Ions to P2X Channel Responses</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Ca2+ entry through transmitter-gated cation channels, including ATP-gated P2X channels, contributes to an array of physiological processes in excitable and non-excitable cells, but the absolute amount of Ca2+ flowing through P2X channels is unknown. Here we address the issue of precisely how much Ca2+ flows through P2X channels and report the finding that the ATP-gated P2X channel family has remarkably high Ca2+ flux compared with other channels gated by the transmitters ACh, serotonin, protons, and glutamate. Several homomeric and heteromeric P2X channels display fractional Ca2+ currents equivalent to NMDA channels, which hitherto have been thought of as the largest source of transmitter-activated Ca2+ flux. We further suggest that NMDA and P2X channels may use different mechanisms to promote Ca2+ flux across membranes. We find that mutating three critical polar amino acids decreases the Ca2+ flux of P2X2 receptors, suggesting that these residues cluster to form a novel type of Ca2+ selectivity region within the pore. Overall, our data identify P2X channels as a large source of transmitter-activated Ca2+ influx at resting membrane potentials and support the hypothesis that polar amino acids contribute to Ca2+ selection in an ATP-gated ion channel.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Amino Acid Substitution - genetics</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Cell Line</subject><subject>Cellular/Molecular</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - genetics</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion Channels - drug effects</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Membrane Potentials - physiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Receptors, Purinergic P2 - genetics</subject><subject>Receptors, Purinergic P2 - metabolism</subject><subject>Receptors, Purinergic P2X</subject><subject>Receptors, Purinergic P2X2</subject><subject>Receptors, Purinergic P2X4</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpVkFFr2zAQx8XoaLOuX6H4aX1ydqeTpehlUEy7ZpR1dC30TciO3GjYVmrZC_v2VUjotpcT3P3ur-PH2DnCHAtOn799v3q8v_tZLueF4DoHmnMA8Y7N0lTnXAAesRlwBbkUSpywDzH-AgAFqI7ZCRZQSMVxxooy9OPgq2n0oc9Ck5W2rf3UZcvQx2wM2Q_-lJVr2_euze5d3KS2ix_Z-8a20Z0d3lP2eH31UN7kt3dfl-XlbV4XpMdcVKBdUUnkRLKuVL3gYrHiirSokWRBCldKUWUlx5WUTggtsdELXFAltGvolH3Z526mqnOr2qVbbWs2g-_s8McE683_k96vzXP4baQiAJIp4NMhYAgvk4uj6XysXdva3oUpGlRaYCoJlHuwHkKMg2vePkEwO-PmzbjZGTdAZmc8LZ7_e-LftYPiBFzsgbV_Xm_94EzsbNsmHM12u-XCIBkSSPQK5seJoQ</recordid><startdate>20040331</startdate><enddate>20040331</enddate><creator>Egan, Terrance M</creator><creator>Khakh, Baljit S</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20040331</creationdate><title>Contribution of Calcium Ions to P2X Channel Responses</title><author>Egan, Terrance M ; Khakh, Baljit S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Amino Acid Substitution - genetics</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Cell Line</topic><topic>Cellular/Molecular</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - genetics</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion Channels - drug effects</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Membrane Potentials - physiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Receptors, Purinergic P2 - genetics</topic><topic>Receptors, Purinergic P2 - metabolism</topic><topic>Receptors, Purinergic P2X</topic><topic>Receptors, Purinergic P2X2</topic><topic>Receptors, Purinergic P2X4</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, Terrance M</creatorcontrib><creatorcontrib>Khakh, Baljit S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, Terrance M</au><au>Khakh, Baljit S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of Calcium Ions to P2X Channel Responses</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2004-03-31</date><risdate>2004</risdate><volume>24</volume><issue>13</issue><spage>3413</spage><epage>3420</epage><pages>3413-3420</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Ca2+ entry through transmitter-gated cation channels, including ATP-gated P2X channels, contributes to an array of physiological processes in excitable and non-excitable cells, but the absolute amount of Ca2+ flowing through P2X channels is unknown. Here we address the issue of precisely how much Ca2+ flows through P2X channels and report the finding that the ATP-gated P2X channel family has remarkably high Ca2+ flux compared with other channels gated by the transmitters ACh, serotonin, protons, and glutamate. Several homomeric and heteromeric P2X channels display fractional Ca2+ currents equivalent to NMDA channels, which hitherto have been thought of as the largest source of transmitter-activated Ca2+ flux. We further suggest that NMDA and P2X channels may use different mechanisms to promote Ca2+ flux across membranes. We find that mutating three critical polar amino acids decreases the Ca2+ flux of P2X2 receptors, suggesting that these residues cluster to form a novel type of Ca2+ selectivity region within the pore. Overall, our data identify P2X channels as a large source of transmitter-activated Ca2+ influx at resting membrane potentials and support the hypothesis that polar amino acids contribute to Ca2+ selection in an ATP-gated ion channel.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>15056721</pmid><doi>10.1523/JNEUROSCI.5429-03.2004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2004-03, Vol.24 (13), p.3413-3420
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730036
source PubMed Central
subjects Adenosine Triphosphate - metabolism
Adenosine Triphosphate - pharmacology
Amino Acid Substitution - genetics
Animals
Calcium - metabolism
Cell Line
Cellular/Molecular
Glutamic Acid - metabolism
Humans
Ion Channel Gating - drug effects
Ion Channel Gating - genetics
Ion Channel Gating - physiology
Ion Channels - drug effects
Ion Channels - genetics
Ion Channels - metabolism
Kidney - cytology
Kidney - metabolism
Membrane Potentials - physiology
Mutagenesis, Site-Directed
Neurotransmitter Agents - metabolism
Neurotransmitter Agents - pharmacology
Patch-Clamp Techniques
Rats
Receptors, Purinergic P2 - genetics
Receptors, Purinergic P2 - metabolism
Receptors, Purinergic P2X
Receptors, Purinergic P2X2
Receptors, Purinergic P2X4
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
title Contribution of Calcium Ions to P2X Channel Responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20Calcium%20Ions%20to%20P2X%20Channel%20Responses&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Egan,%20Terrance%20M&rft.date=2004-03-31&rft.volume=24&rft.issue=13&rft.spage=3413&rft.epage=3420&rft.pages=3413-3420&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5429-03.2004&rft_dat=%3Cproquest_pubme%3E17941179%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-4b09e5b612336cb7c8248d27394c1365371d773ba621d66e44961f98183b49ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17941179&rft_id=info:pmid/15056721&rfr_iscdi=true